
Nummatus: A Privacy Preserving Proof of
Reserves Protocol for Quisquis

Arijit Dutta1, Arnab Jana2, and Saravanan Vijayakumaran1

1 Department of Electrical Engineering
2 Department of Computer Science and Engineering

Indian Institute of Technology Bombay, Mumbai, India
{arijit.dutta@, arnabjanacse@cse., sarva@ee.}iitb.ac.in

Abstract. Quisquis is a recently proposed design for a privacy-focused
cryptocurrency. We present Nummatus, a privacy preserving proof of re-
serves protocol for Quisquis.3 Nummatus enables exchanges to create a
Pedersen commitment to the amount of Quisquis coins they own, with-
out revealing the exact accounts they own. These commitments can be
combined with a commitment to the total liabilities of an exchange to
generate a proof of solvency. The Nummatus protocol also facilitates de-
tection of account sharing collusion between exchanges. Our simulations
show that the cost of using Nummatus instead of a non-private proof of
reserves protocol is not prohibitive.

Keywords: Proof of Reserves · Quisquis · Cryptocurrency · Privacy in
Blockchain.

1 Introduction

Cryptocurrency exchanges arose to enable cryptocurrency acquisition without
mining. They provide custodial wallets and trading services to their customers.
Custodial wallets not only free customers from the burden of storing private
keys but also allow for more efficient trading (as they do not need trades to be
recorded on the blockchain). The downside of custodial wallets is that customer
funds are lost when the exchange gets hacked or when the exchange operators
execute an exit scam. In both these undesirable scenarios, corrective measures
can be more effective if the attacks are detected early.

Proofs of solvency can enable early detection of loss of customer funds from
cryptocurrency exchanges [10,11,20]. These proofs show that the cryptocurrency
reserves of an exchange exceed its liabilities (the amount of coins the exchange
has sold to customers). Exchanges are more likely to provide proofs of solvency
if they are privacy preserving, i.e. the proofs do not reveal which outputs or
accounts on the blockchain belong to the exchange and they also do not reveal
the actual amounts corresponding to the total reserves and total liabilities.

3 Quisquis is Latin for “whoever, whatever” [18]. Nummatus is Latin for “moneyed,
rich” [17]. We chose this name for our protocol as it enables an exchange to show
that it is rich enough to meet its liabilities.



2 A. Dutta et al.

A popular method of providing proofs of solvency is using Pedersen commit-
ments [10, 15]. First, a Pedersen commitment pliab to the total amount of coins
the exchange has sold to customers (the liabilities) is created. The protocol used
to ensure that pliab is in fact a commitment to the exchange’s total liabilities is
called a proof of liabilities protocol. Second, a Pedersen commitment pres to the
total amount of coins owned by the exchange (the reserves) is created. The pro-
tocol used to ensure that pres is a commitment to the exchange’s total reserves is
called a proof of reserves protocol. Third, a range proof on the quantity presp

−1
liab

is provided to show that the difference between the reserves and liabilities is
non-negative and in the correct range.4 Proof of reserves protocols use the data
available on the blockchain. Consequently, reasonable proof of reserves protocols
have been proposed for Bitcoin [10], Monero [12], and Mimblewimble [13]. On
the other hand, proof of liabilities protocols need to use an exchange’s customer
database to generate the proofs. As a malicious exchange can conceal some cus-
tomer records to reduce its liabilities, the proofs of liabilities protocols proposed
so far are not robust. In this paper, we limit our attention to a privacy preserving
proof of reserves protocol for Quisquis [14].

Quisquis is a recently proposed design for privacy-focused cryptocurrency. It
solves the problem of the always growing unspent transaction output (UTXO)
set which plagues other privacy-focused cryptocurrencies like Monero [3] and
Zcash [5]. While no reference implementation of Quisquis exists, the design is
novel enough to warrant designing proof of reserves protocol for it. So when an
implementation does emerge and the Quisquis cryptocurrency becomes available
on exchanges, the Nummatus proof of reserves protocol can be employed in
proofs of solvency.

Our contribution. We propose Nummatus, a proof of reserves protocol
for Quisquis exchanges. It is, to the best of our knowledge, the first such pro-
tocol for Quisquis. Our protocol is privacy preserving in the sense that it only
reveals that the exchange-owned accounts belong to a larger anonymity set of ac-
counts, without identifying which ones are exchange-owned. The protocol gives
a technique to detect collusion between exchanges who use the same account
to generate their respective proofs of reserves. We also describe a non-private
proof of reserves protocol for Quisquis exchanges called Simplus, with the in-
tention of quantifying the cost of deploying a privacy preserving protocol. We
give simulation results to compare the performance of the Nummatus and Sim-
plus protocols. These simulations show that, while privacy has a cost, deploying
Nummatus is a practical proposition.

2 Overview of Quisquis

Privacy-focused cryptocurrencies like Monero and Zcash allow users to conceal
the source of coins in a transaction using ring signatures [16] or zk-SNARKs
[4]. As the true source of coins is not revealed, a one-time address in Monero

4 We present elliptic curve group operations in multiplicative notation to be consistent
with the presentation in the Quisquis paper [14].



Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis 3

and a commitment in Zcash cannot be considered spent.5 Consequently, these
cryptocurrencies have poor scalability in the long term without the opportunity
to prune spent outputs from the blockchain.

Quisquis is a cryptocurrency proposal which offers both privacy and scala-
bility [14]. It is an account-based design (as opposed to a UTXO-based design),
where each account consists of a public key and a commitment to the balance in
the account. The public key is generated from the secret key and a randomizing
scalar. Hence there are many possible public keys corresponding to a secret key
(unlike Bitcoin where the public key is a deterministic function of the secret
key).

Each Quisquis transaction involves some input accounts and an equal number
of output accounts. Each output account is an updated version of exactly one of
the input accounts, where the update consists of an update of the input account’s
public key (the account secret key remains unchanged) and/or an update of the
input account’s balance. Unlike Bitcoin where the input UTXOs in a transaction
represent the source of funds and output UTXOs represent destinations, the
input accounts in a Quisquis transaction consist of both source accounts and
destination accounts. Additionally, some passive accounts are added to the list
of input accounts in the transaction to obfuscate the sources and destinations of
funds. Only the public keys of the passive accounts are updated in a transaction
and their balances are unchanged. On the other hand, the balances of source
accounts are reduced and the balances of destination accounts are increased. For
both source and destination accounts, the public keys are updated. The output
accounts are presented in a lexicographical order to prevent linking of specific
output accounts with input accounts. Once a Quisquis transaction appears on the
blockchain, the input accounts can be pruned. Quisquis has special transactions
for creation and deletion of accounts. Regular transactions do not create new
accounts and this is the main reason for the scalability of the design. In the
following subsections, we present a more precise description of those aspects of
Quisquis that are necessary to present Nummatus.

2.1 Quisquis Accounts

Let G be a group with prime order p and generator g. The Decisional Diffie-
Hellman (DDH) problem is assumed to be hard in G. A Quisquis account based
on G is specified by four group elements (a, b, c, d). The first two group elements
specify a public key pk = (a, b) = (gt, gk·t) where t ∈ Fp is an arbitrary scalar
and k ∈ Fp is the secret key. The last two group elements specify a commitment
which depends on pk and is given by com = (c, d) = (ar, gvbr) where r ∈ Fp
is an arbitrary scalar. Here v ∈ Fp is the value being committed to by com. In
summary, a Quisquis account is of the form

acct = (a, b, c, d) = (a, b, ar, gvbr) =
(
gt, gk·t, gt·r, gv+k·t·r

)
(1)

5 Source addresses in Monero transactions where the sender deliberately chose a ring
size of one can be considered spent. But this kind of behavior is seen only in old
transactions as the default ring size was set to 11 in October 2018 [2].



4 A. Dutta et al.

where k is the secret key, v is the value in the account, and r, t are arbitrary
scalars.

In the Quisquis design, knowledge of the secret key k is sufficient to prove
ownership of an account and to create transactions which transfer value out of
it, i.e. knowledge of the scalars r and t is not required. This feature allows an
entity to perform a secret key preserving update of an account, even when the
entity has no knowledge of the secret key, value, or scalars used to create the
account elements. An update of an account acct = (a, b, c, d) to an account
acct′ = (a1, b1, c1, d1) preserves the secret key k and changes the amount from
v to v + δ if the following equations hold.

b = ak, d = gvck,

b1 = ak1 , d1 = gv+δck1 . (2)

A Quisquis transaction involves account updates of this kind in addition to range
proofs on the values v + δ to ensure that the amount changes are valid.

The account update procedure is as follows:

1. Suppose acct in (1) is the account to be updated.
2. The updater chooses scalars t1, r1, δ ∈ Fp. While t1, r1 are chosen arbitrarily,
δ represents the change in the value stored in the account.

3. The updater computes the updated public key as

pk′ = (a1, b1) = (at1 , bt1). (3)

4. The updater computes the updated commitment as

com′ = (c1, d1) = (car1 , dgδbr1). (4)

Note that this update can be interpreted as the coordinate-wise product of
the commitment (c, d) with the commitment (ar1 , gδbr1).

5. The updated account is acct′ = (pk′, com′) = (a1, b1, c1, d1).

It is easy to check that the equations in (2) hold. Since b = ak, we have

b1 = bt1 =
(
ak
)t1

=
(
at1
)k

= ak1 . (5)

Since d = gvck and c1 = car1 , we have

d1 = dgδbr1 = gvckgδ
(
ak
)r1

= gv+δ (car1)
k

= gv+δck1 . (6)

To see that the updated account has the structure specified in (1), consider the
following version of acct′.

acct′ = (a1, b1, c1, d1) =
(
at1 , bt1 , car1 , dgδbr1

)
(7)

=
(
gt·t1 , gk·t·t1 , gt(r+r1), gv+δ+k·t·(r+r1)

)
(8)

=
(
gt

′
, gk·t

′
, gt

′·r′ , gv+δ+k·t
′·r′
)
, (9)

where t′ = t · t1 and r′ = t−11 · (r + r1).
In the subsequent discussion, we will find it convenient to denote the above

account update procedure by the notation UpdateAcct(acct, t1, r1, δ).



Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis 5

2.2 Quisquis Transactions

Suppose Alice owns account acct1 and wants to transfer δ amount to account
acct2. Alice will choose n − 2 additional accounts from the blockchain which
will play the role of passive accounts. Let these passive accounts be denoted by
acct3, acct4, . . . , acctn. Alice will construct a transaction with input accounts
given by inputs = {acct1, acct2, . . . , acctn}. The input accounts will be listed
in a canonical order like lexicographical ordering to conceal the identity of the
non-passive accounts. Alice will update each of the input accounts to generate
output accounts given by outputs = {acct′1, acct′2, . . . , acct′n} where

acct′1 = UpdateAcct(acct1, t1, r1,−δ),
acct′2 = UpdateAcct(acct2, t2, r2, δ),

acct′3 = UpdateAcct(acct3, t3, r3, 0),

... =
...

acct′n = UpdateAcct(acctn, tn, rn, 0),

where the tis and ris are arbitrarily chosen scalars. Note that the balance in the
source account acct1 is reduced by δ and the balance in the destination account
acct2 is increased by δ. The balances of the passive accounts remain the same.
The output accounts will also be presented in a canonical ordering to conceal the
mapping from the inputs to the outputs. Alice then constructs a zero knowledge
proof π that convinces the verifier of the following statements.

1. Each account in outputs is an update of exactly one of the accounts in
inputs.

2. The account updates cumulatively satisfy preservation of balances i.e.
∑
δi =

0, where δi is the update of balance of accti.

3. The balance of the source account does not become negative after the update.

4. The balance of the destination account after the update is in the correct
range of values (range proof).

5. The balances of the passive accounts remain unchanged.

The transaction txn itself consists of the sets inputs, outputs, and the zero
knowledge proof π, i.e. txn = (inputs, outputs, π). While our illustrative ex-
ample had only one source account and one destination account, transactions
with multiple sources and destinations are allowed in Quisquis.

The implication of this transaction model to our context is that exchange-
owned accounts may be updated several times before they are used in the proof
of reserves protocol. If the exchange is not involved in all the updates of an
account, it will not know the discrete logarithm of the group elements forming
the public key and commitment with respect to the generator g. This fact has
to be taken into consideration in the proof of reserves protocol design.



6 A. Dutta et al.

3 Nummatus Proof of Reserves Protocol

The overall design of the Nummatus protocol is similar to the proof of reserves
protocols which have appeared in the literature [10,12,13]. However, unlike these
previously proposed protocols, the Nummatus protocol requires a sequence of
elements h1, h2, h3, . . . from G whose discrete logarithms with respect to g and
each other are unknown. The sequence {hj ∈ G | j = 1, 2, . . .} can be generated
by repeatedly hashing g while ensuring the result falls in the group G. All the
exchanges need to agree upon the specific sequence generation procedure. A
Nummatus proof which is generated after the jth Quisquis block has appeared
and before the (j + 1)th block has appeared on the blockchain will use the jth
element hj . We will see that this sequence will be used to serve three purposes,
namely, (1) to compute the commitment to the total reserves amount of the
exchange, (2) to reveal collusion between exchanges sharing account to generate
proof of reserves, and (3) to conceal the identity of the exchange’s accounts
across multiple Nummatus proofs.

Suppose an exchange is generating the Nummatus proof of reserves after the
jth Quisquis block. We give a high-level description the procedure followed by
the exchange below (a more precise description is given in Section 3.1).

1. Let Aall be the set of all accounts and let Aown ⊂ Aall be the accounts owned
by the exchange.6 The exchange chooses a set of accounts Aoth not owned
by it, i.e. Aoth ⊂ Aall \ Aown. These other accounts are added to the set of
exchange-owned accounts to form the anonymity set Aanon = Aown ∪ Aoth.

2. Let Aanon = [acct1, acct2, . . . , acctn] where

accti = (ai, bi, ci, di) =
(
ai, a

ki
i , a

ri
i , g

viaki·rii

)
. (10)

Here ki ∈ Fp is the secret key, vi ∈ Fp is the account balance, ri ∈ Fp is an
arbitrary scalar, and ai = gti for an arbitrary ti ∈ Fp.
For each accti, the exchange creates a Pedersen commitment pi and a non-
interactive zero knowledge proof of knowledge (NIZKPoK) σi which proves
the disjunction of the following statements:

(i) Account accti is owned by the exchange, i.e. the exchange knows the
secret key ki associated with accti, and pi is a Pedersen commitment
to the balance vi in accti.

(ii) Pedersen commitment pi is a commitment to the zero amount.

Note that the proof σi proves that one of these two statements is true without
revealing which one.

3. The exchange publishes the anonymity set Aanon, Pedersen commitments
[p1, p2, . . . , pn], and NIZKPoKs [σ1, σ2, . . . , σn]. It claims that pres =

∏n
i=1 pi

is a Pedersen commitment to the total reserves of the exchange.

6 Sets Aall and Aown may change everytime a new block is added to the Quisquis
blockchain. Here we consider particular instances of these sets after the jth block is
added to the blockchain.



Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis 7

To understand the different parts of the protocol, we need to look at the
structure of the individual Pedersen commitments pi. As discussed above, the
discrete logarithms g and hj are unknown with respect to each other. A Pedersen
commitment to an amount v ∈ Fp with respect to bases g and hj is given by
gvhwj where w ∈ Fp is the blinding factor.

When accti ∈ Aown, the Nummatus protocol sets pi = gvihkij . So pi is a
commitment to the balance vi of accti and the secret key ki is the blinding factor
in this case. When accti /∈ Aown, the Nummatus protocol sets pi = hwij for a
randomly chosen wi ∈ Fp, making pi a commitment to the zero amount. Let Iown

be the indices in {1, 2, . . . , n} corresponding to accounts in Aown, i.e. accti ∈
Aown for all i ∈ Iown. Let Icown denote those indices in {1, 2, . . . , n} which are
not in Iown. Then we have

pres =

n∏
i=1

pi =
∏

i∈Iown

gvihkij
∏

i∈Icown

hwij = gvreshwres
j , (11)

where

vres =
∑
i∈Iown

vi, (12)

wres =
∑
i∈Iown

ki +
∑
i∈Icown

wi. (13)

Thus pres is a Pedersen commitment to the exchange’s total reserves vres. If
pliab = gvliabhwliab

j is a Pedersen commitment to the total liabilities of the ex-
change, then a proof of solvency reduces to showing that

presp
−1
liab = gvres−vliabhwres−wliab

j (14)

is a commitment to a non-negative amount in the correct range.
If two exchanges share an account accti while generating their respective

proofs of reserves after the jth Quisquis block, then the account will appear
in both the anonymity sets. But this is not enough to prove account sharing
collusion between the exchanges. However, the commitment pi = gvihkij corre-
sponding to a shared account will appear in both lists of commitments, revealing
the collusion.

The reason for choosing a different base hj for generating the Pedersen com-
mitments after each block is to prevent leaking the identity of exchange-owned
accounts across multiple Nummatus proofs. Suppose the same base h is used
to generate commitments in all Nummatus proofs given by an exchange. Then
the commitments of exchange-owned accounts will remain same across proofs
assuming the balances of the accounts (the vis) remain same. However, the com-
mitments of unknown accounts will be different in different proofs because of
different wis. Thus an observer will be able identify which accounts belong to
the exchange.

A consequence of this design is that exchanges cannot use the same secret
key for multiple accounts if they want to use the Nummatus proof of reserves



8 A. Dutta et al.

protocol. This is not a serious restriction as the convenience afforded by having
the same secret key for multiple accounts is negligible compared to the security
provided by having different keys for different accounts. This issue is further
discussed in Section 4.2.

Note that the proof σi proves that pi is a Pedersen commitment of the form
which is either gvihkij or hwij . If an exchange does not own the account accti, it
will be forced to set pi to the form hwij . When exchange does own the account,

it can set pi to be of the form gvihkij . In the latter scenario, there is nothing
stopping the exchange from setting pi to be of the form hwij . But this will mean
that the balance vi of account accti is not counted in the total reserves amount
vres. In other words, the exchange is under-reporting the reserves it owns. This is
not a problem as long as the reserves exceed the liabilities, since proving solvency
is the final goal.

Due to the DDH assumption in the underlying group G, the Nummatus proof
of reserves protocol satisfies the following properties:

– Inflation resistance: No probabilistic polynomial time (PPT) exchange will
be able to generate a commitment to an amount which exceeds the reserves
it actually owns.

– Proof of non-collusion between exchanges: If two exchanges share an account
while generating their respective proofs of reserves (from the same blockchain
state), then such collusion can be detected.

– Privacy of accounts: No PPT adversary will be able to distinguish whether
an account in the anonymity set belongs to the exchange or not.

3.1 Proof Generation

Suppose a Quisquis exchange wants to generate a Nummatus proof correspond-
ing to its reserves after the jth Quisquis block. It performs the following proce-
dure:

1. The exchange chooses the anonymity set of accounts Aanon from the set of
all accounts Aall present on the blockchain after the jth Quisquis block has
appeared and before the (j + 1)th block appeared. The exchange owns a
subset Aown of Aanon = [acct1, acct2, . . . , acctn].

2. For each accti ∈ Aanon such that accti =
(
ai, a

ki
i , ci, g

vickii

)
, the exchange

generates a Pedersen commitment pi of the form

pi =

{
gvihkij if accti ∈ Aown,

hwij if accti 6∈ Aown,
(15)

where the wis are chosen independently and uniformly from Fp.
3. For each accti ∈ Aanon given by accti = (ai, bi, ci, di) =

(
ai, a

ki
i , ci, g

vickii

)
,

the exchange generates a NIZKPoK σi = (ei,1, ei,2, si,1, si,2) ∈ F4
p of the form

PoK
{

(α, β)
∣∣∣ (bi = aαi ∧ pid

−1
i =

(
c−1i hj

)α) ∨ (pi = hβj

)}
. (16)



Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis 9

The NIZKPoK σi proves that the exchange knows scalars α, β such that ei-
ther pi = hβj or bi = aαi and pid

−1
i =

(
c−1i hj

)α
. The algorithm for generating

σi is given in Appendix A.
4. The exchange publishes the base hj , the anonymity set Aanon, Pedersen

commitments [p1, p2, . . . , pn], and NIZKPoKs [σ1, σ2, . . . , σn]. It claims that
pres =

∏n
i=1 pi is a Pedersen commitment to the total reserves of the ex-

change.

Equation (15) reflects the requirement that pi is a commitment to the account
balance for exchange-owned accounts and a commitment to the zero amount for
other accounts. The choice of blinding factor in each case makes pi a deterministic
function of the secret key and the balance for exchange-owned accounts and a
random group element for other accounts. The NIZKPoK condition in (16) in
fact ensures that an exchange does not deviate from the constructions of pi
given in (15). It states that either pi is a commitment to the zero amount or the
following conditions (in italics) hold:

(i) The discrete logarithm of bi with respect ai is known to the party generating
the proof σi.
As bi = akii , this condition implies that the secret key ki is known to the
exchange.

(ii) The party generating the proof σi knows the discrete logarithm of pid
−1
i

with respect to c−1i hj. Furthermore, the discrete logarithm is equal to the
discrete logarithm of bi with respect to ai.
As bi = akii , from (16) we have

pid
−1
i =

(
c−1i hj

)ki
. (17)

Since di = gvickii , from the above equation we get

pig
−vic−kii = c−kii hkij =⇒ pi = gvihkij . (18)

Thus pi is a commitment to the balance vi in the account accti with
blinding factor ki as given in (15).

3.2 Proof Verification

Given a Nummatus proof of reserves from an exchange referring to the blockchain
state after the jth Quisquis block, the verifier checks the following conditions:

1. All the accounts in the anonymity set Aanon must appear on the blockchain
immediately after the jth block. If an account in Aanon does not appear on
the blockchain, the proof is considered invalid.

2. For each i, the NIZKPoK σi must pass the verification procedure given in
Appendix A.

3. The commitments pi, i = 1, 2, . . . , n, must not appear in another exchange’s
Nummatus proof. If the same commitments pi appears in the Nummatus
proofs of two different exchanges, then collusion is declared and the proof of
reserves is considered invalid.



10 A. Dutta et al.

4 Nummatus Security Properties

In this section, we discuss the security properties of the Nummatus protocol. We
are concerned with inflation resistance, collusion resistance, and account privacy
(as defined in Section 3).

4.1 Inflation and Collusion Resistance

Inflation resistance refers to the requirement that a PPT exchange should not
be able to use the Nummatus protocol to generate a Pedersen commitment pres
to an amount vres which is greater than the total reserves it owns. Suppose pres
is a commitment to vres which is greater than

∑
i∈Iown

vi. Then since

pres =

n∏
i=1

pi =
∏

i∈Iown

pi
∏

i∈Icown

pi, (19)

it must be that either pi is not a commitment to zero for some i ∈ Icown or pi is a
commitment to an amount larger than the account balance vi for some i ∈ Iown.
For i ∈ Icown, the exchange does not know the secret key ki and consequently
it must generate the NIZKPoK σi by setting pi to be commitment to the zero
amount. For i ∈ Iown, if a PPT exchange sets pi to be a commitment to a
nonzero amount then σi forces this amount to be the account balance vi (see
equation (18)). So the inflation resistance property of Nummatus follows from
the unforgeability of the NIZKPoKs σi.

When pi is not a commitment to zero, the account accti must be owned by
the exchange as the private key ki is needed to create pi as gvihkij . This form of
pi is a deterministic function of vi and ki. So two exchanges sharing accti after
the jth Quisquis block will produce same pi in their proofs. If this happens, then
account sharing collusion is immediately detected.

4.2 Account Privacy

Account privacy refers to the requirement that a PPT distinguisher D, which
is given a polynomial number of Nummatus proofs as input, cannot identify
exchange-owned accounts in the anonymity set Aanon except with a negligible
probability. Our proof that the Nummatus protocol preserves account privacy
relies on the DDH problem being hard in the group used to implement Quisquis.

Let λ ∈ N be a security parameter. Suppose Setup(1λ) is a group generation
algorithm which gives (G, g, p) where G is a group with generator g and prime
order p. We assume that there is no algorithm which can solve the DDH problem
in G with a running time which is polynomial in λ.

To define account privacy security, we will use an experiment with name
AccountPriv.

– Let us consider an exchange which has generated f(λ) Nummatus proofs
where f is a polynomial.



Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis 11

– Let A1
anon,A2

anon, . . . ,A
f(λ)
anon, be the anonymity sets used in these f(λ) proofs

having sizes N1, N2, . . . , Nf(λ), respectively.
– For l = 1, 2, . . . , f(λ), assume that the lth Nummatus proof was created

after the jlth block appeared and before the (jl + 1)th block appeared on
the blockchain. So the lth Nummatus proof will use bases g and hjl to create
Pedersen commitments.

– The lth Nummatus proof consists of the base hjl , the anonymity set Alanon,
Pedersen commitments [pl,1, pl,2, . . . , pl,Nl ], and NIZKPoKs [σl,1, σl,2, . . . , σl,Nl ].

We make two assumptions:

(i) The secret keys of all exchange-owned accounts in the lth anonymity set
Alanon are all distinct. This is necessary as the Nummatus protocol cannot
provide account privacy without this constraint. To see why, suppose two
accounts in Alanon share the same secret key k. Let their corresponding
Pedersen commitments be pl,i = gvhkjl and pl,i′ = gv

′
hkjl where i, i′ are the

account indices and v, v′ are the account balances. An adversary can figure
out that these two accounts are exchange-owned accounts by checking if
the equality pl,ig

−v1 = pl,i′g
−v2 holds for some (v1, v2) ∈ V 2 where V is

the set of all possible amounts. As the size of V is small, this attack is
practical. In fact, the receiver of a funds in a regular Quisquis transaction
has to search through all possible values in V to figure out the amount
received [14, Section 5.2.3].

(ii) There is an exchange-owned account with secret key k which appears in the
anonymity sets of all the f(λ) Nummatus proofs. This assumption serves
to simplify the notation. In the AccountPriv experiment, we want to con-
sider an adversary which can identify an exchange-owned account based
on multiple Nummatus proofs. The existence of such an adversary who
can successfully identify an exchange-owned account with a non-negligible
probability will lead to a contradiction of the DDH assumption. An adver-
sary who succeeds only if the account appears in all the f(λ) Nummatus
proofs is weaker than an adversary who can succeed even if the account
appears in a subset of the f(λ) Nummatus proofs. Thus obtaining a contra-
diction from the non-negligible success probability of the weaker adversary
is sufficient.
Let il be the index of the account with secret key k in the lth anonymity
set Alanon = [acctl1, acct

l
2, . . . , acct

l
Nl

]. Let vl be the non-zero balance of
this account when the lth Nummatus proof is created. Thus we have

pl,il = gvlhkjl or pl,il = h
wl,il
jl

, (20)

where wl,il ∈ Fp.

The experiment AccountPriv proceeds as follows.

1. The group parameters are generated as (G, g, p)← Setup(1λ). A sequence of
group elements h1, h2, h3, . . . are chosen uniformly and independently from
G.



12 A. Dutta et al.

2. From the sequence generated in the previous step, the exchange chooses a
subsequence hj1 , hj2 , . . . , hjf(λ) where f is a polynomial.

3. The exchange chooses a bit b uniformly from {0, 1}.
4. If b = 0, the exchange sets pl,il = h

wl,il
jl

for some uniformly chosen wl,il
from Fp for all l = 1, 2, . . . , f(λ), i.e. the ilth account does not contribute to
the reserves in all the f(λ) Nummatus proofs. The exchange generates the
NIZKPoKs σl,il accordingly.
The other commitments pl,i for all l = 1, 2, . . . , f(λ) and i = 1, 2, . . . , Nl, i 6=
il are generated arbitrarily . The corresponding NIZKPoKs σl,i are generated
accordingly.

5. If b = 1, the exchange sets pl,il = gvlhkjl for all l = 1, 2, . . . , f(λ), i.e. the ilth
account contributes its balance to the reserves in all the f(λ) Nummatus
proofs. The exchange generates the NIZKPoKs σl,il accordingly.
The other commitments pl,i for all l = 1, 2, . . . , f(λ) and i = 1, 2, . . . , Nl, i 6=
il are generated arbitrarily . The corresponding NIZKPoKs σl,i are generated
accordingly.

6. Let Nl =
(
hjl ,Alanon, [pl,1, . . . , pl,Nl ], [σl,1, . . . , σl,Nl ]

)
be the lth Nummatus

proof. Let the account index vector be I = [i1, i2, . . . , if(λ)] and the ac-
count balance vector be V = [v1, v2, . . . , vf(λ)]. The f(λ) Nummatus proofs

{Nl}f(λ)l=1 , I, and V are given as input to a distinguisher D which then outputs
a bit b′, i.e.

b′ = D
(
N1,N2, . . . ,Nf(λ), I,V

)
. (21)

7. D succeeds if b′ = b. Otherwise it fails.

Definition 1. The Nummatus proof of reserves protocol provides account pri-
vacy if for every PPT distinguisher D in the AccountPriv experiment with a
probability which is negligibly close to 1

2 .

This definition captures the requirement that a distinguisher should not be
able to tell if an account was used in a sequence of Nummatus proofs even if
it knew the account index in the anonymity set and the account balance in all
the proofs. Note that distinguisher who knows I and V is more likely to succeed
than a distinguisher which does not know these vectors, i.e.

Pr
[
D
(
N1,N2, . . . ,Nf(λ)

)
= b
]
≤ Pr

[
D
(
N1,N2, . . . ,Nf(λ), I,V

)
= b
]
. (22)

So if we can show that for every distinguisher D with knowledge of I and V,
there is a negligible function negl such that

Pr
[
D
(
N1,N2, . . . ,Nf(λ), I,V

)
= b
]
≤ 1

2
+ negl(λ), (23)

then the same upper bound applies holds on the success probability of distin-
guishers which do not know I and V. We will use a distinguisher of the form
D
(
N1,N2, . . . ,Nf(λ), I,V

)
to construct an adversary who can solve the gener-

alized DDH problem [6] resulting in the following theorem.



Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis 13

Theorem 1. The Nummatus proof of reserves protocol provides account pri-
vacy in the random oracle model under the DDH assumption provided that the
exchange uses distinct secret keys for its accounts in the anonymity set.

Proof. Suppose E is an adversary which wants to solve the generalized DDH
problem given a tuple

(
g1, . . . , gf(λ), u1, . . . , uf(λ)

)
∈ G2f(λ) [6]. Specifically, it

want to distinguish between the following two situations:

– In the tuple
(
g1, . . . , gf(λ), u1, . . . , uf(λ)

)
, each of the gis and uis are uni-

formly and independently chosen from G.
– In the tuple

(
g1, . . . , gf(λ), u1, . . . , uf(λ)

)
, each of the gis are uniformly and

independently chosen from G. Each ul = gkl for all l = 1, 2, . . . , f(λ) where
k is chosen uniformly from Fp.

Let d = 0 denote the former situation and d = 1 denote the latter situation. If
d′ is the output of a PPT E , then Pr [d′ = d] must be negligibly close to 1

2 .
The adversary E will construct a valid input for the distinguisher D in the

AccountPriv experiment in the following manner:

1. For l = 1, 2, . . . , f(λ), E chooses anonymity set sizes Nl and test account
indices il where 1 ≤ il ≤ Nl. It also chooses non-zero values vl for the test
account balances from the allowed set of amount values V .

2. For each l, the accounts in the anonymity set Alanon = [acctl1, . . . , acct
l
Nl

]
are constructed as

acctli = (al,i, bl,i, cl,i, dl,i) =

{(
gtl,i , gkl,i·tl,i , gtl,i·rl,i , gvl,i+kl,i·tl,i·rl,i

)
if i 6= il(

g
tl,i
l , u

k′·tl,i
l , g

tl,i·rl,i
l , gvlu

k′·tl,i·rl,i
l

)
if i = il

where k′, kl,i, tl,i, rl,i are chosen uniformly and independently from Fp and
vl,i are chosen uniformly and independently from V . From equation (1), it
follows that acctli is a valid account for i 6= il. For i = il and ul = gkl ,
i.e. the case of d = 1, it again follows that acctll is a valid account with
secret key k · k′. For d = 0, the uls are independent of the gls. But since the
gls are generators of the prime order group G, we have ul = gsll for some
sl ∈ Fp. Even though the sls are not known to E , acctli can be expressed as(
g
tl,i
l , g

k′·sl·tl,i
l , g

tl,i·rl,i
l , gvlg

k′·sl·tl,i·rl,i
l

)
which is a valid account structure.

3. For each l, E sets hjl = gl and pl,il = gvluk
′

l . As E does not know the discrete

logarithm of uk
′

l with respect to hjl = gl, it generates valid NIZKPoKs σl,il
using the random oracle assumption on H (see [12] for a similar argument).
It involves changing the outputs of H for some inputs such that equation
(31) is satisfied. We omit the details due to space constraints.
The other commitments pl,i for all l = 1, 2, . . . , f(λ) and i = 1, 2, . . . , Nl, i 6=
il are generated arbitrarily . The corresponding NIZKPoKs σl,i are generated
accordingly using knowledge of kl,i.

4. E gives the f(λ) Nummatus proofs generated in the previous steps, the index
vector I, and the balance vector V to a distinguisher D in the AccountPriv

experiment. Let b′ = D
(
N1,N2, . . . ,Nf(λ), I,V

)
. E outputs d′ = b′. If D is

a PPT algorithm, then so is E .



14 A. Dutta et al.

Aanon Aown Nummatus Nummatus Nummatus Simplus Simplus Simplus
size size Proof Generat. Verification Proof Generat. Verification

Size Time Time Size Time Time

100 25 0.02 MB 1.15 s 1.15 s 0.006 MB 0.29 s 0.28 s

100 50 0.02 MB 1.16 s 1.16 s 0.011 MB 0.58 s 0.57 s

100 75 0.02 MB 1.19 s 1.19 s 0.017 MB 0.91 s 0.91 s

1000 250 0.29 MB 11.94 s 11.76 s 0.057 MB 3.00 s 2.98 s

1000 500 0.29 MB 11.92 s 11.77 s 0.114 MB 5.97 s 5.95 s

1000 750 0.29 MB 11.83 s 11.74 s 0.171 MB 8.92 s 8.74 s

10000 2500 2.93 MB 112.65 s 113.36 s 0.572 MB 28.99 s 28.06 s

10000 5000 2.93 MB 112.08 s 113.23 s 1.145 MB 56.40 s 56.63 s

10000 7500 2.93 MB 111.71 s 112.87 s 1.717 MB 85.07 s 85.72 s

Table 1. Proof Generation and Verification Performance of Nummatus and Simplus

Suppose the d = 0 situation occurs, i.e. ul = gsll for uniform sl ∈ Fp. Then

irrespective of the values of vl, the terms pl,il = gvluk
′

l are uniformly distributed
over G. This corresponds to the situation of b = 0 in the AccountPriv experi-
ment. On the other hand if the d = 1 situation occurs, then ul = gkl for a fixed

k ∈ Fp for all l. Then for hjl = gl, we have pl,i = gvluk
′

l = gvlgk·k
′

l = gvlhk·k
′

jl
.

This corresponds to the situation of b = 1 in the AccountPriv experiment. Thus
we have Pr[d′ = d] = Pr[b′ = b].

If there exists a PPT distinguisher D whose success probability Pr[b′ = b] is
larger than 1

2 + 1
q(λ) for some polynomial q, then this will imply that the success

probability Pr[d′ = d] of E is also larger than 1
2 + 1

q(λ) . As a PPT adversary

who can solve the generalized DDH problem is equivalent to a PPT adversary
who can solve classical DDH problem [6], we get a contradiction. Thus any
PPT distinguisher D in the AccountPriv experiment can only succeed with a
probability which is negligibly close to 1

2 . ut

5 Performance

To the best of our knowledge, Nummatus is the first proof of reserves protocol for
Quisquis exchanges which keeps the identities of the exchange accounts private.
For benchmarking purposes, we compare Nummatus to a simple non-private
protocol which we will call Simplus.7 In the Simplus protocol, the exchange
reveals the accounts it owns, i.e. the set Aown is revealed. Like Nummatus, this
protocol outputs a Pedersen commitment to the total reserves of the exchange.
While the Simplus protocol does not provide account privacy, it provides reserve
amount privacy. The proof generation in Simplus proceeds as follows:

1. The exchange chooses a set Aown = {acct1, acct2, . . . , acctm} of its own
accounts which are sufficient to meet its liabilities. These accounts need to

7 Simplus is Latin for “simple” [19].



Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis 15

be present on the blockchain after the jth Quisquis block has appeared and
before the (j + 1)th block appeared.

2. For each accti ∈ Aown given by accti = (ai, bi, ci, di) =
(
ai, a

ki
i , ci, g

vickii

)
,

the exchange generates a Pedersen commitment pi := gvihki and a NIZKPoK
ψi = (ei,1, si,1) ∈ F2

p of the form

PoK
{
α
∣∣∣ (bi = aαi ∧ pid

−1
i =

(
c−1i h

)α)}
. (24)

Note that in case of Nummatus, we need to use hj as base of pi to make
exchange’s accounts indistinguishable from accounts not owned by the ex-
change across multiple Nummatus proofs. But in case of Simplus, the ex-
change has already revealed the accounts owned by it. Therefore we can
simply use h instead of hj as a base of pi. The algorithm for generating ψi
is given in Appendix B.

3. The exchange publishes the setAown, Pedersen commitments [p1, p2, . . . , pm],
and NIZKPoKs [ψ1, ψ2, . . . , ψm]. It claims that pres =

∏m
i=1 pi is a Pedersen

commitment to the total reserves of the exchange.

The NIZKPoK in (24) ensures that the exchange knows the private key ki for
each account accti. Furthermore, by the argument presented in the Numma-
tus protocol discussion, the NIZKPoK ensures that pi is a commitment to the
account balance vi of accti. As the exchange’s accounts are revealed in the Sim-
plus protocol, collusion between exchanges can be detected if the same account
appears in the own account lists of two different exchanges.

The Simplus proof verification proceeds as follows:

1. All the accounts in the set Aown must appear on the blockchain immediately
after the jth block. If not, the proof is considered invalid.

2. For each i, the NIZKPoK ψi must pass the verification procedure given in
Appendix B.

The simulation code was implemented in Rust using the rust-secp256k1-zkp
library [1] which has also been used for Revelio [13]. The performance of the
Nummatus proof generation and verification algorithms is given in Table 1 for
anonymity list Aanon having sizes 100, 1000, and 10000. For each case, the per-
centage of accounts belonging to the exchange is either 25%, 50%, or 75%. Table
1 also shows the performance of the Simplus protocol as a function of Aown size
(the Aanon parameter is irrelevant here). The execution times were measured on
single core of an Intel i7-7700 3.6 GHz CPU. The Nummatus protocol is at most
3 to 4 times slower and its proof size is at most 4 to 5 times larger compared to
the Simplus protocol. The proof size and execution time of Nummatus protocol
are practical and can be reduced further by parallel signature generations and
verifications for different accounts in Aanon. The higher values of performance
parameters for Nummatus than that of Simplus can be considered as the price
we are paying for privacy.



16 A. Dutta et al.

6 Conclusion

We give Nummatus, the first privacy preserving proof of reserves protocol for
Quisquis [14] exchanges. Using Nummatus, a Quisquis exchange can prove that
it holds more reserves than what it owes to its customers without revealing the
reserves amount or the identity of owned accounts. Nummatus also detects the
account sharing collusion between exchanges provided all exchanges generate
their proofs after a particular block is added to the Quisquis blockchain. We
give the performance comparison of Nummatus and a non-private proof of re-
serves protocol which we call Simplus. Our simulation shows that deployment of
Nummatus is practical and feasible.

A Nummatus NIZKPoK Generation and Verification
Algorithms

In this appendix, we present algorithms for generating and verifying the NIZKPoK
σi that is used in Nummatus. In the notation proposed by Camenisch and
Stadler [7], [8], the NIZKPoK is of the form

PoK
{

(α, β)
∣∣∣ (bi = aαi ∧ pid

−1
i =

(
c−1i hj

)α) ∨ (pi = hβj

)}
.

The above proof is for a disjunction of two statements. We motivate the structure
of σi by first describing methods to prove these two statements individually. Then
the method first proposed by Cramer et al. [9] is used to generate a proof for
the disjunction of the two statements.

Let H : {0, 1}∗ 7→ Fp be a cryptographic hash function which is modeled as a
random oracle. Let ‖ denote the bitstring concatenation operator. For notational
convenience, we write H(x, y, z) to denote H(x‖y‖z) where x, y, z are group
elements represented as bitstrings.

Definition 2. An ordered pair (e, s) ∈ F2
p is a NIZKPoK of the discrete loga-

rithm of a group element pi with respect to a base hj if

e = H(hj , pi, h
s
jp
e
i ). (25)

The pair (e, s) is said to be of the form PoK{β | pi = hβj }.

The proof (e, s) is generated by first choosing a scalar r uniformly from Fp and
calculating e = H(hj , pi, h

r
j). The second element of the pair is calculated as

s = r − eβ where β is the discrete logarithm of pi with respect to hj , which is
known to the prover. It now follows that

e = H(hj , pi, h
r
j) = H(hj , pi, h

s+eβ
j ) = H(hj , pi, h

s
jp
e
i ). (26)

The verification of the proof (e, s) simply consists of checking the equality in
equation (25).



Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis 17

Definition 3. An ordered pair (e, s) ∈ F2
p is a NIZKPoK of

(i) the knowledge of the discrete logarithms of the group elements bi with re-
spect to base ai, and

(ii) the knowledge of discrete logarithms of the group element pid
−1
i with respect

to base c−1i hj, and
(iii) the equality of the discrete logarithm of bi with respect to ai and of pid

−1
i

with respect to c−1i hj,

if it satisfies

e = H
(
stmti, a

s
i b
e
i ,
(
c−1i hj

)s (
pid
−1
i

)e)
. (27)

where stmti = (hj , ai, bi, ci, di, pi) is the tuple of group elements appearing in
the statement being proved. The ordered pair (e, s) is said to be of the form

PoK
{
α
∣∣∣ bi = aαi ∧ pid

−1
i =

(
c−1i hj

)α}
.

A prover who knows α can generate the proof (e, s) as follows:

– The prover chooses scalars r uniformly from Fp and calculates

e = H
(
stmti, a

r
i ,
(
c−1i hj

)r)
. (28)

– The second scalar in the proof is calculated as

s = r − eα (29)

It follows that

e = H
(
stmti, a

r
i ,
(
c−1i hj

)r)
= H

(
stmti, a

s+eα
i ,

(
c−1i hj

)s+eα)
= H

(
stmti, a

s
i b
e
i ,
(
c−1i hj

)s (
pid
−1
i

)e)
. (30)

The verification of the proof (e, s) simply consists of checking the equality in
equation (27).

The NIZKPoK σi in Nummatus is a proof of the disjunction of the two
statements proved above.

Definition 4. The tuple σi = (e1, e2, s1, s2) ∈ F4
p is a NIZKPoK of the knowl-

edge of the discrete logarithm of a group element pi with respect to base hj or

– the knowledge of the discrete logarithm of the group element bi with respect
to base ai, and

– the knowledge of discrete logarithm of the group element pid
−1
i with respect

to base c−1i hj, and
– the equality of the discrete logarithm of bi with respect to ai and of pid

−1
i

with respect to c−1i hj,



18 A. Dutta et al.

if it satisfies

e1 + e2 = H
(
stmti, a

s1
i b

e1
i ,
(
c−1i hj

)s1 (
pid
−1
i

)e1
, hs2j p

e2
i

)
. (31)

where stmti = (hj , ai, bi, ci, di, pi) is the tuple of group elements appearing in
the statement being proved. The tuple (e1, e2, s1, s2) is said to be of the form

PoK
{

(α, β)
∣∣∣ (bi = aαi ∧ pid

−1
i =

(
c−1i hj

)α) ∨ (pi = hβj

)}
.

Suppose the prover know the discrete logarithm β of pi with respect to base
hj . Then she can create the proof σi as follows:

(i) She chooses scalars r2, e1, s1 uniformly and independently from Fp. She
calculates e2 as

e2 = H
(
stmti, a

s1
i b

e1
i ,
(
c−1i hj

)s1 (
pid
−1
i

)e1
, hr2j

)
− e1. (32)

(ii) Using her knowledge of β, she calculates s2 as

s2 = r2 − e2β. (33)

It follows that

e1 + e2 = H
(
stmti, a

s1
i b

e1
i ,
(
c−1i hj

)s1 (
pid
−1
i

)e1
, hs2+e2βj

)
= H

(
stmti, a

s1
i b

e1
i ,
(
c−1i hj

)s1 (
pid
−1
i

)e1
, hs2j p

e2
i

)
. (34)

On the other hand, if the prover knows α such that bi = aαi , and pid
−1
i =(

c−1i hj
)α

, then she can create the proof σi as follows:

(i) She chooses scalars r1, e2, s2 uniformly and independently from Fp. She
calculates e1 as

e1 = H
(
stmti, a

r1
i ,
(
c−1i hj

)r1
, hs2j p

e2
i

)
− e2. (35)

(ii) Using her knowledge of α, she calculates s1 as

s1 = r1 − e1α. (36)

It follows that

e1 + e2 = H
(
stmti, a

r1
i ,
(
c−1i hj

)r1
, hs2j p

e2
i

)
= H

(
stmti, a

s1+e1α
i ,

(
c−1i hj

)s1+e1α
, hs2j p

e2
i

)
= H

(
stmti, a

s1
i b

e1
i ,
(
c−1i hj

)s1 (
pid
−1
i

)e1
, hs2j p

e2
i

)
. (37)

In both cases, the verification of the proof (e1, e2, s1, s2) consists of checking the
equality in equation (31). In the proof of disjunction of statements, the prover
has one degree of freedom as only the sum e1 + e2 has to be equal to the hash
function output (whose argument contains the scalars). This freedom is exploited
to choose which knowledge is used to prove the disjunction.



Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis 19

B Simplus NIZKPoK Generation and Verification
Algorithms

Compared to the NIZKPoK in the Nummatus protocol, the NIZKPoK ψi in the
Simplus protocol is simpler to compute.

Definition 5. An ordered pair ψi = (e, s) ∈ F2
p is a NIZKPoK of

(i) the knowledge of the discrete logarithm of the group element bi with respect
to base ai, and

(ii) the knowledge of discrete logarithm of the group element pid
−1
i with respect

to base c−1i h, and

(iii) the equality of the discrete logarithm of bi with respect to ai and of pid
−1
i

with respect to c−1i h,

if it satisfies

e = H
(
stmti, a

s
i b
e
i ,
(
c−1i h

)s (
pid
−1
i

)e)
. (38)

where stmti = (h, ai, bi, ci, di, pi) is the tuple of group elements appearing in the
statement being proved. The ordered pair (e, s) is said to be of the form

PoK
{
α
∣∣∣ bi = aαi ∧ pid

−1
i =

(
c−1i h

)α}
.

A prover who knows α can generate the proof (e, s) as follows:

– The prover chooses scalars r uniformly from Fp and calculates

e = H
(
stmti, a

r
i ,
(
c−1i h

)r)
. (39)

– The second scalar in the proof is calculated as

s = r − eα (40)

It follows that

e = H
(
stmti, a

r
i ,
(
c−1i h

)r)
= H

(
stmti, a

s+eα
i ,

(
c−1i h

)s+eα)
= H

(
stmti, a

s
i b
e
i ,
(
c−1i h

)s (
pid
−1
i

)e)
. (41)

The verification of the proof (e, s) simply consists of checking the equality in
equation (38).



20 A. Dutta et al.

References

1. Grin rust-secp256k1-zkp github repository, https://github.com/mimblewimble/
secp256k1-zkp/

2. Monero 0.13.0 Beryllium Bullet Release Notes, https://src.getmonero.org/

2018/10/11/monero-0.13.0-released.html, [Accessed 02-Aug-2019]
3. Monero website, https://getmonero.org/
4. What are zk-SNARKs?, https://z.cash/technology/zksnarks/, [Accessed 02-

Aug-2019]
5. Zcash website, https://z.cash/
6. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Information

and Communications Security. pp. 301–312 (2003)
7. Camenisch, J.: Group signature schemes and payment systems based on the dis-

crete logarithm problem. Ph.D. dissertation, ETH Zürich (1998)
8. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete

logarithms. Tech. rep. (1997)
9. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-

plified design of witness hiding protocols. In: Advances in Cryptology — CRYPTO
’94. pp. 174–187. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

10. Dagher, G.G., Bünz, B., Bonneau, J., Clark, J., Boneh, D.: Provisions: Privacy-
preserving proofs of solvency for Bitcoin exchanges. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (ACM
CCS). pp. 720–731. New York, NY, USA (2015)

11. Decker, C., Guthrie, J., Seidel, J., Wattenhofer, R.: Making Bitcoin exchanges
transparent. In: 20th European Symposium on Research in Computer Security
(ESORICS). pp. 561–576 (2015)

12. Dutta, A., Vijayakumaran, S.: MProve: A proof of reserves protocol
for Monero exchanges. In: 2019 IEEE European Symposium on Se-
curity and Privacy Workshops (EuroS&PW). pp. 330–339 (June 2019).
https://doi.org/10.1109/EuroSPW.2019.00043

13. Dutta, A., Vijayakumaran, S.: Revelio: A MimbleWimble proof of reserves protocol.
In: 2019 Crypto Valley Conference on Blockchain Technology (CVCBT). pp. 7–11
(June 2019). https://doi.org/10.1109/CVCBT.2019.000-5

14. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design for
anonymous cryptocurrencies. Cryptology ePrint Archive, Report 2018/990 (2018),
https://eprint.iacr.org/2018/990

15. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Advances in Cryptology — CRYPTO ’91. pp. 129–140. Springer (1992)

16. Saberhagen, N.v.: CryptoNote v 2.0. White paper (2013), https://cryptonote.
org/whitepaper.pdf

17. Wiktionary contributors: nummatus — Wiktionary, the free dictionary, https:

//en.wiktionary.org/wiki/nummatus, [Accessed 02-Aug-2019]
18. Wiktionary contributors: quisquis — Wiktionary, the free dictionary, https://en.

wiktionary.org/wiki/quisquis, [Accessed 02-Aug-2019]
19. Wiktionary contributors: simplus — Wiktionary, the free dictionary, https://en.

wiktionary.org/wiki/simplus, [Accessed 02-Aug-2019]
20. Wilcox, Z.: Proving your Bitcoin reserves. Bitcoin Talk Forum Post (May 2014),

https://bitcointalk.org/index.php?topic=595180.0

https://github.com/mimblewimble/secp256k1-zkp/
https://github.com/mimblewimble/secp256k1-zkp/
https://src.getmonero.org/2018/10/11/monero-0.13.0-released.html
https://src.getmonero.org/2018/10/11/monero-0.13.0-released.html
https://getmonero.org/
https://z.cash/technology/zksnarks/
https://z.cash/
https://doi.org/10.1109/EuroSPW.2019.00043
https://doi.org/10.1109/CVCBT.2019.000-5
https://eprint.iacr.org/2018/990
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://en.wiktionary.org/wiki/nummatus
https://en.wiktionary.org/wiki/nummatus
https://en.wiktionary.org/wiki/quisquis
https://en.wiktionary.org/wiki/quisquis
https://en.wiktionary.org/wiki/simplus
https://en.wiktionary.org/wiki/simplus
https://bitcointalk.org/index.php?topic=595180.0

	Nummatus: A Privacy Preserving Proof of Reserves Protocol for Quisquis

