
Rewrite Cost Optimal Rank Modulation Codes in S4

and S5

Arijit Dutta and Saravanan Vijayakumaran
Department of Electrical Engineering

Indian Institute of Technology Bombay, Mumbai 400076, India
Email: arijit.dutta@iitb.ac.in, sarva@ee.iitb.ac.in

Abstract—In this paper, we have found all possible largest
permutation codes in S4 and S5 under Kendall τ -distance.
We consider two rewrite operations namely push-to-the-top and
minimal-push-up and give the optimum codes in terms of rewrite
cost for both these techniques. These optimum codes can be
obtained from a set of relatively smaller size for both the cases.
We also give the largest single error correcting Gray code when
minimal-push-up is used.

I. INTRODUCTION

Rank modulation (RM) is a data representation technique for
flash memories which was proposed to deal with the inherent
problems posed by the flash device [1]. It proposes to replace
a multiple level cell (MLC) by a group of n cells. In RM, the
relative ranking of group of n cells represents one information
symbol. One of the important parameters of error correcting
codes for RM is rewrite cost. For storing new information,
charge levels of cells are increased to change the ranking. This
is called data rewrite operation. In a flash cell, storing charge
is easy but removal is difficult. After multiple rewrites, when
the charge level of one cell reaches to the maximum allowed
level, a block of large number of cells has to be erased. It is a
costly operation and it reduces the lifetime of the flash device
itself. Rewrite cost reflects the increase in charge level due
to each rewrite operation. The code having the lowest overall
rewrite cost gives the largest number of rewrites before a block
erasure is needed. In Figure 1, three codes have been separately
used for storing and updating information symbols. Here, we
assume that code 1 has the highest and code 3 has the lowest
overall rewrite cost. So, code 1 allows the least number (five)
of rewrites and code 3 allows the most number (eleven) of
rewrites before a block erasure is needed (as one of the cells
reaches to its maximum allowed level). Therefore, code 3 is
better RM code than code 1 and code 2 in terms of rewrite
cost and it is more suitable for practical use.

The main contribution of this paper is to find all possible
largest codes of given minimum distance in S4 and S5 and to
give the optimum codes in terms of rewrite cost. Contributions
of this paper are listed in the following:
• We have found all possible largest codes with various

minimum Kendall τ -distance in S4 and S5 by maximum
clique approach.

• We have obtained the set of smallest possible size from
which all codes can be found. We have defined this as the

Figure 1: RM codes having different rewrite costs.

set of non-equivalent codes.
• We give an algorithm to compute the rewrite cost when

push-to-the-top is used as rewrite operation.
• For both push-to-the-top and minimal-push-up, we give

the optimum codes in terms of rewrite cost.
• We show that the optimum code is a member of set of

non-equivalent codes for both rewrite operations.
• We also give the largest single error correcting Gray code

when minimal-push-up is used.

II. BASIC CONCEPTS

As we have mentioned before, the relative ranking of charge
levels of n cells represents a symbol in RM. These rankings
are permutations in the symmetric group Sn. For example in
Figure 1, symbol 1 in code 1 is represented by the permutation
(3, 5, 1, 4, 2) ∈ S5. This is because cell 3 has the highest charge
level, cell 5 has the second highest charge level and so on.
There are n! number of permutations in Sn. Each permutation
is a bijection from [n] → [n] where [n] := {1, 2, ..., n}. For
example, σ = (σ(1), σ(2), ..., σ(n)) ∈ Sn is the bijection 1→
σ(1), 2 → σ(2), ..., n → σ(n). The group operation in Sn is
the composition of these bijections.

Figure 2: A graph whose vertex set is S3 with edges between
permutations at Kendall τ -distance of 2 and 3 from each other.

One error model in RM is adjacent transposition. If we
apply adjacent transposition τi on σ = (σ(1), ..., σ(i −
1), σ(i), σ(i+1), σ(i+2), ..., σ(n)) ∈ Sn, we get the permuta-
tion (σ(1), ..., σ(i− 1), σ(i+ 1), σ(i), σ(i+ 2), ..., σ(n)). The
metric which captures this error model is called the Kendall τ -
distance [2]. Given σ, π ∈ Sn, the Kendall τ -distance dk(σ, π)
is defined as the minimum number of adjacent transpositions
to get π from σ or vice-versa. A closed form expression for
the Kendall τ -metric [3] is given by

dk(σ, π) = |{(i, j) : σ−1(i) < σ−1(j) ∧ π−1(i) > π−1(j)}|.
(1)

The Kendall τ -metric is invariant to right multiplication [4],
where right multiplication is outer composition. For example,
let σ, π ∈ Sn. Then σ ∗ π := π(σ(i)) for i ∈ [n]. The property
says that for any σ, π, ω ∈ Sn,

dk(σ ∗ ω, π ∗ ω) = dk(σ, π). (2)

A permutation code under the Kendall τ -metric is a subset of
Sn where the Kendall τ -distance between any two elements is
at least d. Here d is the minimum distance of the code. Let
P (n, d) represents the size of the largest permutation code in
Sn with minimum Kendall τ -distance d. It is defined as

P (n, d) := max{|C| | C ⊆ Sn, |C| ≥ 2, dmin(C) ≥ d}. (3)

RM is likely to be implemented for smaller values of n.
Therefore, finding codes of size P (n, d) for smaller n has
become an interesting problem. Buzaglo et al. [3] gives the
bounds on P (n, d) for n = 5, 6, 7. Vijayakumaran [5] gives the
exact values of P (n, d) for n = 5, 6 and codes which have size
P (n, d). Here, the author has taken the integer programming
approach which gives one possible code of size P (n, d).

A well known technique for finding all possible largest code
is by finding maximum clique of a graph [6]. Let us consider
a simple undirected graph G = (V,E) with the node set V
and the edge set E ⊆ V × V . A clique C is a subset of V
where the nodes are pairwise adjacent i.e. C ⊆ V such that
(i, j) ∈ E for all i, j ∈ C. A maximum clique of G is a
clique of maximum possible cardinality. An example is shown
in Figure 2. Here, G = (V,E), where V = S3 and E =

{(σ, π) ∈ Sn × Sn | dk(σ, π) ≥ 2}. Corresponding Kendall τ -
distances between any two permutations sharing an edge, are
shown. There are multiple cliques of size 2 and 3. Size of a
maximum clique is 3. {(1, 2, 3), (3, 2, 1)}, {(1, 3, 2), (2, 3, 1)},
{(3, 1, 2), (2, 3, 1)} are cliques of size two. Maximum cliques
are {(1, 2, 3), (3, 1, 2), (2, 3, 1)}, {(1, 3, 2), (3, 2, 1), (2, 1, 3)}.
Notice that these maximum cliques are subsets of S3 such
that the Kendal τ -distance between any two elements is two or
more. So by (3), they are codes of size P (3, 2). If we remove all
the edges with Kendall τ -distance 2, then there will be cliques
of size two only. They will be maximum cliques in this case.
By similar arguments, they represent codes of size P (3, 3). In
this case, the edge set E = {(σ, π) ∈ Sn×Sn | dk(σ, π) ≥ 3}.

III. ENUMERATION OF CODES OF SIZE P (4, d) AND P (5, d)

Consider the graph G = (Sn, E). We define E as

E = {(σ, π) ∈ Sn × Sn | dk(σ, π) ≥ d}. (4)

A maximum clique of G is a code of size P (n, d). This is
because a maximum clique in this case is a subset of Sn of
maximum possible cardinality where the distance between any
two elements of it is at least d. As maximum cliques in a
graph are not unique, we can have many codes of size P (n, d)
for a given n and d. Cliquer [7] is an open source software
which finds clique of a given graph. Using Cliquer, we have
enumerated all possible largest codes in S4 and S5. By Theorem
10 of [3], we know

P (n, d) = 2 for d >
2

3

(
n

2

)
. (5)

So, P (3, d) = 2 for d > 3. We found all possible codes
of size P (n, d) by Cliquer for d ∈ {3, 4} in S4 and for d ∈
{3, 4, 5, 6} in S5. Cliquer could not give us results in S6.

Kendall τ -metric is invariant to right multiplication. So,
given a code of size P (n, d), if we multiply to the right
its elements with any σ ∈ Sn, we get a new code of size
P (n, d) with the same relative distances among codewords.
We say that these two codes are equivalent. We observed
that many codes found by Cliquer can be obtained from one
another by right multiplication. So, among this abundance of
codes of size P (n, d) in Sn, we have found which of them
are not equivalent i.e. one that cannot be obtained by right
multiplication by any element in Sn from any other codes.
Collectively we define them as the set of non-equivalent codes.
Figure 3 gives an illustration. Here, C1 = {c1, c2, c3, c4} is a
member of the set of non-equivalent codes. We get another code
C2 = {c′1, c′2, c′3, c′4} by right multiplication by some σ ∈ Sn

i.e. c′i = ci ∗ σ for i ∈ [4]. Owing to the right invariance of
Kendall τ -metric, we have

dk(ci, cj) = dk(c
′
i, c
′
j) for ∀(i, j) ∈ [4]× [4]. (6)

We say code C1 and code C2 are equivalent. Any code of
size P (n, d) can be obtained from this set of non-equivalent
codes by right multiplication by some σ ∈ Sn.

Figure 3: Set of non-equivalent codes.

n d P (n, d) L(n, d) L′(n, d) S(n, d)

4 3 5 48 2 0

4 4 3 40 3 2

5 3 20 3192 38 1

5 4 12 51280 443 0

5 5 6 8160 68 0

5 6 5 168 3 2

Table I: Observation on largest codes in S4 and S5.

Let L(n, d) denotes the total number of largest codes in Sn

with minimum distance d, L′(n, d) denotes the number of non-
equivalent largest codes in Sn with minimum distance d, and
S(n, d) denotes the number of largest codes present in the set
of non-equivalent codes which are subgroups of Sn. Table I
shows our observation.

As shown in Table I, a large number of codes can be gener-
ated from the set of non-equivalent codes. We have observed
that all codes of size P (n, d) have the same minimum distance
d for all n and d. Weight distribution of codes are sometimes
different. However, comparison on weight distribution can be
done on set of non-equivalent codes instead of set of all codes
of size P (n, d).

IV. BEST CODE IN TERMS OF REWRITE COST FOR
MINIMAL-PUSH-UP OPERATION

There are multiple ways to choose the best code among all
possible codes. One possibility could be choosing the code
which gives optimum error performance. However we could not
find any proper channel model for RM in the literature to do
this analysis. In this paper, we find the optimum codes in terms
of rewrite cost. As discussed in Section I, during data rewrite
operation in RM, the charge levels of cells are monotonically
increased. The data rewrite operation for RM proposed by Jiang
et al. [1] is called push-to-the-top operation. In their work, they
have given the scheme for constructing the code which gives

1 2 3 4 5

Figure 4: Virtual level and rewrite cost.

the optimal performance in terms of rewrite cost when there
is random data modification. However they did not consider
error correction. Therefore, finding rewrite cost optimal error
correcting codes for RM is an interesting problem. En Gad et al.
[8] have proposed a better rewrite technique for RM namely
minimal-push-up operation. Let us consider both the rewrite
techniques. Suppose the present state of a group of 4 cells is
(2, 1, 3, 4) and we want to change it to (2, 1, 4, 3). For minimal-
push-up, the charge level of cell 4 is to be increased above
only the charge level of cell 3. For push-to-the-top technique,
the charge level of cell 4 is to be increased above the highest
charge level i.e. the charge level of cell 2 in this case. Similarly,
we move from back to the front and increase the charge level
of cell 1 above cell 3 and 4 (if it is already not) and so on.

We can only do data rewrite on a code till a cell reaches it’s
physical limit of charge level. After that the whole block of
cells is to be erased. We refer to the interval before a costly
block erasure process is needed as operation period. Out of all
these codes, the code which gives the longest operation period,
gives maximum rewrites before block erasure. This code has
the minimum average rewrite cost (to be defined shortly) and
hence is the optimum code in terms of rewrite cost.

Exact increase in charge level after rewrite operation is a
real random variable. We do not know its value. To quantify
the improvement of minimal-push-up over push-to-the-top, En
Gad et al. [8] have introduced the concept of virtual level of
charge of the group of cells. Further, they have defined the
cost of rewrite as the difference between the highest virtual
levels of the cells before and after rewrite. Figure 4 gives an
example of virtual level and rewrite cost. Given a group of five
cells, the initial state is (3, 5, 1, 4, 2) and we need to change
it to (2, 3, 5, 1, 4). Clearly, the charge level of cell 2 has to be
pushed above the charge level of cell 3 in this case. The rewrite
cost in this case is the difference between the highest virtual
levels before and after rewrite i.e. 6 − 5 = 1. En Gad et al.
proposed an algorithm for calculating rewrite cost for any two
given permutations when minimal-push-up operation is done
for rewrite. We reproduce their algorithm in the following.

Let u, v ∈ Sn and li denotes the virtual level of cell i. Let
the cost of rewrite from u to v is given by φ(u→ v). Then the
algorithm to calculate φ(u→ v) is:

1) For i = 1, 2, ..., n do:
lu(i) ← n+ 1− i

n d Minimum ARC Maximum ARC Best Code

4 3 1.76 1.76 Cmpu
(4,3)

4 4 1.55 1.66 Cmpu
(4,4)

5 3 2.55 2.60 Cmpu
(5,3)

5 4 2.51 2.58 Cmpu
(5,4)

5 5 2.39 2.50 Cmpu
(5,5)

5 6 2.40 2.44 Cmpu
(5,6)

Table II: Best codes in S4 and S5 in terms of minimum ARC
for minimal-push-up operation.

2) For i = n− 1, n− 2, ..., 1 do:
lv(i) ← max{lv(i+1) + 1, lv(i)}

3) φ(u→ v) = lv(1) − n.
Using this cost function, we define average rewrite cost of a
given code as follows.

Let us consider that there is one rewrite operation. We
assume that all the codewords of the given code (C) are
equiprobable to be chosen to represent the initial data and the
data after rewrite. So for any x, y ∈ C, the probability that x
is chosen as the first codeword and y is chosen as the next
codeword for rewrite is

p(x, y) = p(x)p(y) =
1

|C|2
. (7)

The cost of rewrite from codeword x to codeword y is given
by φ(x → y). Clearly, when x = y, φ(x → y) = 0. Now we
define Average Rewrite Cost (ARC) of the given code C as:

ARC(C) :=
∑
x∈C

∑
y∈C

p(x, y)φ(x→ y)

=
1

|C|2
∑
x∈C

∑
y∈C

φ(x→ y). (8)

If we assume that probability p(x, y) is same for every
rewrite, then the same definition of ARC is applicable for
multiple rewrites.

We compare all the cliques representing codes of size
P (n, d) and choose the code that gives us minimum ARC.
If we use this code then we will get the longest operation
period before a costly cell erase operation is needed. This
is because the rewrite cost reflects the change in the highest
charge levels before and after rewrite. Higher the cost the
sooner we need a costly cell erase operation as the highest
charge level reaches the maximum allowed level. Table II shows
the observation we have made. Here, the minimum ARC is
same as the maximum ARC for n = 4, d = 3. So, every
code is optimal in terms of rewrite cost in this case. We also
do not observe much difference between the minimum and the
maximum ARC. However, for enterprise uses where the number
of rewrite and block erasure is huge, optimum codes might
be very useful. The best codes are given in the appendix. We
observe the same minimum ARC when we consider the set of
non-equivalent codes for each n and d. This is because of the
following lemma.

Lemma 1. The cost function φ(u → v) is invariant to right
multiplication i.e. φ(u→ v) = φ(u∗w → v∗w) for all u, v, w ∈
Sn.

Proof: From theorem 1 of En Gad et al. [8], we know
φ(u→ v) = maxi∈[n](v−1(i)−u−1(i)). The cost is the maximal
increase in rank among cells (for example, increase in rank of
cell 1 for u→ v is v−1(1)− u−1(1)).

Now we claim that, the rank of cell i in v is equal to the
rank of cell w(i) in v ∗w. This is true because the rank of cell
i in v is v−1(i)

= v−1(w−1(w(i))

= (w−1 ∗ v−1)(w(i))
= (v ∗ w)−1(w(i))
= rank of cell w(i) in v ∗ w.

Hence, the increase in rank for cell i in u → v is equal to
the increase in rank for cell w(i) in u ∗w → v ∗w. As w is a
bijection over [n] → [n], the cost function φ i.e. the maximal
increase in rank among cells remains the same.

Every possible code of size P (4, d) and P (5, d) can be
obtained by right multiplication from the set of non-equivalent
codes. So the set of non-equivalent codes gives us the code
with the minimum ARC.

A. Largest Single Error Correcting Gray Code

The Gray code proposed by Jiang et al. [1] is a sequence
of elements in Sn, where we can traverse from one element to
the element adjacent to it by a single push-to-the-top operation.
The traversing in Gray code represents the gradual increase in
the charge level of an MLC by the smallest possible amount.
Error correcting Gray code is a Gray code where the distance
between any two elements of the code is lower bounded by
some positive integer (say d). For d = 2, such Gray codes are
called snake-in-the-box codes [9]. In snake-in-the-box codes,
the next codeword is obtained from the current codeword by
a single push-to-the-top operation and it detects a single error.
We have found the largest error correcting Gray code where
the minimum distance of the code is 3. Therefore it can correct
a single error. Here, the rewrite operation is minimal-push-up
and adjacent elements can be obtained from one to the next
incurring unit rewrite cost.

We propose to define a Gray code as a sequence of elements
of Sn where the next element (say y) can be written from
the current element (say x) by minimal-push-up technique
incurring unit rewrite cost i.e. φ(x → y) = 1. We observe
that there exists an order in Cmpu

(5,3) (given in appendix)
following which we obtain a Gray code as defined above. If
we read in Cmpu

(5,3) row-wise from 1 to 20 i.e. the 1st element
is (1, 2, 3, 4, 5), 2nd element is (4, 5, 1, 2, 3), 5th element
is (1, 5, 2, 4, 3) and so on, then the Gray sequence is
{13, 8, 1, 20, 18, 15, 5, 16, 9, 4, 2, 3, 19, 11, 14, 6, 7, 17, 10, 12}.
This Gray code consists of all the elements of Cmpu

(5,3). Therefore,
this is the largest single error correcting Gray code in S5

under Kendall τ -distance. We did not find any other Gray
code of significant length.

V. BEST CODE IN TERMS OF REWRITE COST FOR
PUSH-TO-THE-TOP OPERATION

In the case of push-to-the-top operation, the rewrite cost
of changing one permutation to the other is defined as the
minimum number of push-to-the-top operations needed for the
change [1]. Let u, v ∈ Sn and li denotes the virtual level of
cell i. Let the minimum number of push-to-the-top operations
needed to change u to v be minptt(u → v). Now, we propose
an algorithm as follows.

1) For i = 1, 2, ..., n do:
lu(i) ← n+ 1− i

2) For i = n− 1, n− 2, ..., 1 do:
if lv(i) > lv(i+1)

continue (2)
else
lv(i) ← max{(maxj∈[n]\{v(i)} lj + 1), lv(i)}

3) ξ(u→ v) = lv(1) − n.

Example 1. Let u = (1, 2, 3, 4) and v = (2, 1, 4, 3). From step
1 of the algorithm, we have l1 = 4, l2 = 3, l3 = 2, l4 = 1.
From step 2, we have the following updates in the values of
lis.

l4 ≯ l3 =⇒ l4 = 5

l1 ≯ l4 =⇒ l1 = 6

l2 ≯ l1 =⇒ l2 = 7.

So we have

ξ(u→ v) = lv(1) − n = l2 − 4 = 3.

We observe that it takes at least 3 push-to-the-top operations
to get v from u as follows:

(1, 2, 3, 4)→ (4, 1, 2, 3)→ (1, 4, 2, 3)→ (2, 1, 4, 3)

So minptt(u→ v) is also 3 in this case.

Theorem 1. ξ(u→ v) = minptt(u→ v)

Proof: According to the algorithm, if for some i, the virtual
level of v(i) is less than the virtual level of v(i+ 1), then cell
i is pushed to the top. Total number of such pushes is given
by ξ (u→ v) = lv(1) − n. This has to be done at least so that
we can transform u to v. So, ξ(u→ v) ≤ minptt(u→ v).

But by the nature of the algorithm, lv(i) is increased every
time after the first push-to-the-top operation. So, ξ(u → v) ≥
minptt(u→ v). Hence, ξ(u→ v) = minptt(u→ v).

When we use push-to-the-top operation, minptt(u → v) =
ξ(u→ v) is the rewrite cost for changing u to v. Using this cost
function we calculate ARC of a code using a process similar to
the one described in section IV. Table III shows our observation.
In this case also we do not observe much difference between
the minimum and the maximum ARC. However, for enterprise
uses where the numbers of rewrites and block erasures are huge,
optimum codes might be very useful.

n d Minimum ARC Maximum ARC Best Code

4 3 1.96 2.00 Cptt
(4,3)

4 4 1.67 2.00 Cptt
(4,4)

5 3 3.13 3.23 Cptt
(5,3)

5 4 3.05 3.16 Cptt
(5,4)

5 5 2.75 3.03 Cptt
(5,5)

5 6 2.60 2.80 Cptt
(5,6)

Table III: Best codes in S4 and S5 in terms of minimum ARC
for push-to-the-top operation.

Best codes are given in the appendix. Also we get the same
minimum ARC if we consider the set of all codes instead of
the set of non-equivalent codes as before. This is because of
the following lemma.

Lemma 2. minptt(u → v) = minptt(u ∗ w → v ∗ w) for any
u, v, w ∈ Sn.

Proof: Let u = (u(1), u(2), ..., u(n)), v =
(v(1), v(2), ..., v(n)), and w = (w(1), w(2), ..., w(n)).
Suppose, we need a push-to-the-top operation on cell i for
u→ v. Then the following conditions have to be satisfied

u(i) = v(1) (9)
u(j) = v(j + 1) for 2 ≤ j < i (10)
u(j) = v(j) for i < j ≤ n (11)

Now, let j be a positive integer such that 2 ≤ j < i. Then,

(u ∗ w)(j) = w(u(j))

= w(v(j + 1))

= (v ∗ w)(j + 1).

Therefore, Condition 10 is satisfied if we multiply w with u
and v. Similarly, other conditions are also satisfied for the
corresponding values of j. Hence, we need push-to-the-top
operation on cell i for u ∗ w → v ∗ w similar to u → v.
This argument works for any conditions on u(i)s and v(i)s
corresponding to the push-to-the-top operations requirement for
u → v. So we conclude that, the same push-to-top operations
are needed for u ∗ w → v ∗ w and u → v. Therefore,
minptt(u→ v) = minptt(u ∗ w → v ∗ w) for any u, v, w ∈ Sn.

Following the same argument made in section IV, we con-
clude that the set of non-equivalent code gives the minimum
ARC in case of push-to-the-top also.

VI. CONCLUSION

In this work, we have enumerated all possible permutation
codes of size P (n, d) in S4 and S5 by using the software
Cliquer [7]. We reduce the set of all possible codes to the set
of non-equivalent codes. All possible codes can be obtained by
right multiplication from this set of non-equivalent codes. We
have shown that the code that gives minimum ARC belongs
to this smaller set for both the cases when push-to-the-top and

minimal-push-up are used. We also give the largest single error
correcting Gray code in S5 when minimal-push-up is used.

ACKNOWLEDGEMENTS

We would like to acknowledge the support of the Bharti
Centre for Communication at IIT Bombay which made this
work possible.

APPENDIX

This appendix contains all the rewrite cost optimal codes
(code with minimum ARC) which appear in Table II and Table
III.

A. Optimum codes for minimal-push-up

• Code Cmpu
(4,3) is

(1, 2, 3, 4) (3, 1, 4, 2) (3, 2, 4, 1)

(2, 4, 1, 3) (4, 1, 3, 2)
• Code Cmpu

(4,4) is

(1, 2, 3, 4) (3, 4, 1, 2) (4, 2, 1, 3)
• Code Cmpu

(5,3) is

(1, 2, 3, 4, 5) (4, 5, 1, 2, 3) (4, 3, 5, 1, 2)

(4, 1, 2, 3, 5) (1, 5, 2, 4, 3) (5, 3, 2, 1, 4)

(2, 5, 3, 4, 1) (2, 3, 4, 1, 5) (1, 4, 3, 5, 2)

(3, 4, 2, 5, 1) (5, 1, 4, 3, 2) (3, 1, 4, 2, 5)

(3, 2, 1, 5, 4) (3, 5, 1, 4, 2) (5, 2, 4, 1, 3)

(1, 3, 5, 2, 4) (4, 2, 5, 3, 1) (2, 4, 1, 5, 3)

(5, 4, 3, 2, 1) (2, 1, 5, 3, 4)
• Code Cmpu

(5,4) is

(1, 2, 3, 4, 5) (2, 3, 4, 5, 1) (3, 4, 5, 1, 2)

(2, 4, 1, 5, 3) (2, 5, 1, 3, 4) (4, 5, 2, 3, 1)

(4, 1, 5, 3, 2) (1, 5, 3, 2, 4) (5, 3, 2, 4, 1)

(3, 2, 1, 5, 4) (4, 3, 2, 1, 5) (5, 1, 4, 2, 3)

• Code Cmpu
(5,5) is

(1, 2, 3, 4, 5) (5, 3, 4, 1, 2) (1, 4, 5, 3, 2)

(3, 2, 5, 1, 4) (4, 3, 2, 1, 5) (5, 2, 1, 4, 3)
• Code Cmpu

(5,6) is

(1, 2, 3, 4, 5) (4, 1, 5, 3, 2) (3, 4, 2, 5, 1)

(5, 3, 1, 2, 4) (2, 5, 4, 1, 3)

B. Optimum codes for push-to-the-top

• Code Cptt
(4,3) is

(1, 2, 3, 4) (3, 1, 4, 2) (3, 2, 4, 1)

(2, 4, 1, 3) (4, 1, 3, 2)
• Code Cptt

(4,4) is

(1, 2, 3, 4) (3, 4, 1, 2) (4, 2, 1, 3)
• Code Cptt

(5,3) is

(1, 2, 3, 4, 5) (3, 4, 5, 1, 2) (4, 5, 1, 2, 3)

(5, 1, 2, 3, 4) (2, 5, 3, 4, 1) (2, 3, 4, 1, 5)

(4, 1, 3, 5, 2) (3, 5, 2, 4, 1) (3, 1, 4, 2, 5)

(5, 3, 1, 4, 2) (3, 2, 1, 5, 4) (1, 5, 4, 3, 2)

(1, 4, 2, 5, 3) (5, 2, 4, 1, 3) (1, 3, 5, 2, 4)

(4, 2, 5, 3, 1) (2, 4, 1, 5, 3) (4, 3, 2, 1, 5)

(5, 4, 3, 2, 1) (2, 1, 5, 3, 4)
• Code Cptt

(5,4) is

(1, 2, 3, 4, 5) (2, 3, 4, 5, 1) (3, 4, 5, 1, 2)

(2, 4, 1, 5, 3) (2, 5, 1, 3, 4) (4, 5, 2, 3, 1)

(4, 1, 5, 3, 2) (1, 5, 3, 2, 4) (5, 3, 2, 4, 1)

(3, 2, 1, 5, 4) (4, 3, 2, 1, 5) (5, 1, 4, 2, 3)
• Code Cptt

(5,5) is

(1, 2, 3, 4, 5) (3, 4, 2, 1, 5) (3, 5, 1, 4, 2)

(2, 5, 3, 1, 4) (4, 5, 2, 3, 1) (1, 5, 4, 2, 3)
• Code Cptt

(5,6) is

(1, 2, 3, 4, 5) (4, 1, 5, 3, 2) (3, 4, 2, 5, 1)

(5, 3, 1, 2, 4) (2, 5, 4, 1, 3)

REFERENCES

[1] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Transactions on Information Theory, vol. 55, no.
6, pp. 2659–2673, June 2009.

[2] M. Kendall and J. D. Gibbons, Rank Correlation Methods, New York:
Oxford Univ. Press, 1990.

[3] S. Buzaglo and T. Etzion, “Bounds on the size of permutation codes with
the Kendall τ -metric,” IEEE Transactions on Information Theory, vol. 61,
no. 6, pp. 3241–3250, June 2015.

[4] M. Deza and H. Huang, “Metrics on permutations, a survey,” in J.
Combinat., Inf., Syst. Sci., 1998, vol. 23, pp. 173–185.

[5] S. Vijayakumaran, “Largest permutation codes with the Kendall τ -metric
in S5 and S6,” IEEE Communications Letters, vol. 20, no. 10, pp. 1912–
1915, October 2016.

[6] I. M. Bomze, M. Budinich, P. M. Pardolos, and M. Pellilo, The maximum
clique problem, in: D.-Z. Du and P. M. Pardolos (Eds.), Handbook of
Combinatorial Optimization, Supplement Volume A, Kluwer, Dordrecht,
1999, pp. 1-74.

[7] S. Niskanen and P. R. J. Östergård, Cliquer User’s Guide, Version 1.0,
Communications Laboratory, Helsinki University of Technology, Espoo,
Finland, Tech. Rep. T48, 2003.

[8] E. En Gad, A. Jiang, and J. Bruck, “Compressed encoding for rank
modulation,” in Proc. IEEE Int. Symp. Information Theory (ISIT), July
2011, pp. 884–888.

[9] Y. Yehezkeally and M. Schwartz, “Snake-in-the-box codes for rank
modulation,” IEEE Transactions on Information Theory, vol. 58, no. 8,
pp. 5471–5483, August 2012.

