
Privacy Focused Proof of Reserves Protocols
for Cryptocurrency Exchanges

A thesis submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

by

Arijit Dutta
(Roll No. 154070004)

Under the guidance of
Prof. Saravanan Vijayakumaran

Department of Electrical Engineering
INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

July 2021

Dissertation Approval

The thesis entitled

Privacy Focused Proof of Reserves Protocols
for Cryptocurrency Exchanges

by

Arijit Dutta
(Roll No. 154070004)

is approved for the degree of

Doctor of Philosophy

Prof. Sushmita Ruj Prof. Nikhil Karamchandani
(Examiner) (Examiner)

Prof. Saravanan Vijayakumaran Prof. K. S. Mallikarjuna Rao
(Supervisor) (Chairman)

Date:

Place:

22nd July, 2021

DECLARATION

I declare that this written submission represents my ideas in my own words and where

others’ ideas or words have been included, I have adequately cited and referenced the orig-

inal sources. I also declare that I have adhered to all principles of academic honesty and

integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source

in my submission. I understand that any violation of the above will be cause for disci-

plinary action by the Institute and can also evoke penal action from the sources which

have thus not been properly cited or from whom proper permission has not been taken

when needed.

Arijit Dutta

Roll Number - 154070004

Date - 22.07.2021

ii

Acknowledgement

I would like to express my immense gratitude to my supervisor Prof. Saravanan Vijayaku-

maran, who has been an ideal teacher and guide since the beginning of my journey on

the path of a Ph.D. student. He gave me an opportunity to work with him, motivated to

put more efforts, and supported when things did not work out as planned. He introduced

and motivated me to pursue research in this exciting area of applied cryptography for the

blockchain technology. Owing to his impeccable leadership qualities, I could work and

grow in a healthy, resourceful, and collaborative environment.

I would like to thank Prof. Bikash Kumar Dey, Prof. Nikhil Karamchandani, and

Prof. Sachin Patkar who were in the research progress committee. They always motivated

me to improve my research and clarified my doubts whenever approached. I am also

indebted to every other faculty members of IIT Bombay who taught me various subjects

which helped me a lot during research. Their wisdom and philosophy showed me the path

during hard times.

I would like to thank my collaborators Suyash Bagad and Arnab Jana. Their insights

have enhanced the quality of the research. I shall always cherish the long hours in the lab

we spent discussing various aspects of the projects.

I would like to acknowledge the help and support I have received from the Bharti

Centre for Communication lab. It provided me a suitable place to work, resources, and

funds for research curriculum. I am also indebted to the various staffs and seniors of the

lab and the department who helped me in every way they could whenever approached.

Finally, I am grateful to my parents (Shree Surajit Dutta and Smt. Bani Dutta),

grandfather (Shree Sushil Mukherjee), and wife (Smt. Sweta Das) for their support, bless-

ings, and well wishes. Without the support of my family, I could not have reached to the

place I am today and achieved whatever I could.

iii

Abstract

Cryptocurrency exchanges help to distribute the ownership of cryptocurrencies from the

miners to other cryptocurrency users. They buy cryptocurrencies from different miners

and provide their customers with various services, namely, possession of cryptocurrencies,

safe-keeping the private keys in custodial wallets, and trading of cryptocurrencies. How-

ever, there is growing customer concern and distrust towards this popular business model.

This is mainly because of the loss of assets by the exchanges due to fraudulent activities

and the inability of the exchanges to meet the liabilities towards their customers at some

particular instant of time. To regain the trust of the customers, it is proposed that the

exchanges should publish periodic proofs that they own more amount of cryptocurrencies

than they have sold to their customers i.e. they are solvent. It is desirable that such proof

of solvency techniques (a) do not violate the privacy of the exchange, (b) are based on

standard cryptographic assumptions, (c) should be publicly verifiable, and (d) need no

trusted setup or involvement of a third party.

Provisions [1] is the first proof of solvency scheme proposed for Bitcoin which meets

all the above criteria. To prove solvency, the scheme generates an encryption of the

reserves amount and obfuscates the exchange-owned addresses in a larger anonymity set.

Then the scheme gives a proof of reserves (PoR) without violating the privacy of the

exchange. A PoR protocol is an integral part of a proof of solvency protocol. Unlike the

remaining steps, the PoR protocol in Provisions is specific to Bitcoin and does not work for

other cryptocurrencies. We have proposed the first privacy focused PoR protocols for three

different cryptocurrency systems, namely, Monero, MimbleWimble, and Quisquis. Our

PoR protocols enable proof of solvency schemes satisfying the above mentioned criteria.

For Monero, we have proposed another PoR scheme which provides better privacy than

our previous proposal. The simulation results show that all the proposed schemes are

practical enough to be adopted by the exchanges in practice.

iv

Contents

Abstract iii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 A Brief Introduction to Cryptocurrency . 1

1.2 Cryptocurrency Exchange . 4

1.3 Proof of Solvency Protocol . 5

1.4 Our Contribution . 8

1.5 Organization of the Thesis . 9

1.6 Desirable Properties of Proof of Reserves and Challenges 10

2 MProvisions and MProve: Proof of Reserves Protocols for Monero 12

2.1 Introduction . 12

2.2 Overview of Monero . 12

2.2.1 Receiver Privacy and the Unlinkability Property of Monero 13

2.2.2 Sender Privacy and the Untraceability Property of Monero 14

2.2.3 Amount Confidentiality and Public Verification of Monero Trans-

actions . 17

2.3 Existing Proof of Reserves Protocols . 20

2.3.1 Existing Reserves Proof for Monero 20

2.3.2 Provisions’ Proof of Reserves Protocol for Bitcoin 21

2.4 Proposed Privacy Focused Proof of Reserves Protocols for Monero 25

2.4.1 MProvisions Protocol . 25

v

2.4.2 MProve Protocol . 30

2.5 Drawback of MProve and MProvisions . 37

2.6 Security Properties of MProve and MProvisions 40

2.6.1 Collusion Resistance . 40

2.6.2 Inflation Resistance . 40

2.6.3 Pre-spend Privacy . 41

2.7 Effect of Proposed Protocols on Monero Privacy 47

2.7.1 Effect on the Untraceability Property of Monero 47

2.7.2 Effect on the Amount Confidentiality Property of Monero 47

2.7.3 Effect on the Unlinkability Property of Monero 48

2.8 Implementation and Performance . 50

2.9 Conclusion . 51

3 MProve+: Privacy Enhancing Proof of Reserves Protocol for Monero 53

3.1 Background . 54

3.1.1 Notation . 54

3.1.2 Drawback of MProve . 55

3.1.3 Bulletproofs and Omniring . 56

3.2 MProve+: An Improvement over MProve 59

3.2.1 Intuition . 59

3.2.2 Construction of MProve+ . 61

3.2.3 Forming the Main Equality . 62

3.2.4 Defining Secret Vectors and the Constraint Equations 63

3.2.5 Combining All Constraint Equations in a Single Inner Product . . . 65

3.2.6 Proof Generation and Verification 69

3.3 Security Properties . 70

3.3.1 Inflation Resistance . 70

3.3.2 Collusion Resistance . 71

3.3.3 Privacy . 71

3.4 Effect of MProve+ on Monero Privacy . 77

3.4.1 Effect on the Untraceability Property of Monero 77

3.4.2 Effect on the Amount Confidentiality Property of Monero 77

vi

3.4.3 Effect on the Unlinkability Property of Monero 78

3.5 Performance . 80

3.6 Conclusion . 82

4 Revelio: A MimbleWimble Proof of Reserves Protocol 83

4.1 Overview of Grin . 83

4.1.1 Outputs . 84

4.1.2 Transaction Fields . 84

4.1.3 Transaction Validation . 86

4.1.4 Interactive Transaction Construction 88

4.1.5 Blocks . 90

4.2 Signatures Proving Statements about Discrete Logarithms 91

4.3 Revelio Proof of Reserves Protocol . 94

4.3.1 Proof Generation . 95

4.3.2 Proof Verification . 98

4.4 Security Properties . 98

4.4.1 Inflation Resistance . 98

4.4.2 Collusion Resistance . 99

4.4.3 Privacy . 99

4.5 Performance . 100

4.6 Conclusion . 102

5 Nummatus: A Proof of Reserves Protocol for Quisquis 103

5.1 Overview of Quisquis . 104

5.1.1 Quisquis Accounts . 105

5.1.2 Quisquis Transactions . 107

5.2 Nummatus Proof of Reserves Protocol . 108

5.2.1 Proof Generation . 111

5.2.2 Proof Verification . 113

5.3 Nummatus Security Properties . 113

5.3.1 Inflation Resistance . 113

5.3.2 Collusion Resistance . 114

5.3.3 Privacy . 114

vii

5.4 Performance . 116

5.5 Conclusion . 118

6 Conclusion 119

6.1 Summary of Results . 119

6.2 Open Problems . 121

List of Publications 122

Bibliography 123

A Proofs and Signatures Generation Procedures in Chapter 2 129

A.1 Proof of SHVZK Property of MProvisions 129

A.2 Ring Signature Generation in MProve . 131

A.3 Linkable Ring Signature Generation in MProve 132

A.4 Proof of Theorem 2.2 . 133

A.5 Proof of Theorem 2.3 . 134

A.6 Proof of Theorem 2.4 . 139

B Proofs and other Additional Aspects in Chapter 3 141

B.1 Difficulties in Hiding the Key Images of Source Addresses 141

B.2 Proof of Theorem 3.3 . 145

C Proof of Theorem 4.1 152

D Proofs and Signature Generation Procedures in Chapter 5 157

D.1 Proof of Theorem 5.1 . 157

D.2 Nummatus NIZKPoK Generation and Verification Algorithms 162

D.3 Simplus NIZKPoK Generation and Verification Algorithms 166

viii

List of Figures

1.1 Cryptocurrency network and blockchain. 2

2.1 Linkable ring signature. 17

2.2 Provisions’ proof of reserves protocol. 21

2.3 Linking key image for MProve when a source address is spent. 38

2.4 Linking key image for MProvisions when a source address is spent. 39

3.1 Honest encoding of witness in MProve+. 63

3.2 Definitions of constraint vectors (dots mean zero vectors) for MProve+. . . 63

3.3 Definitions of constraint vectors (continued) for MProve+. 65

3.4 A system of constraint equations guaranteeing integrity of encoding of wit-

ness for MProve+. 65

3.5 Illustration of Example 3.1. 73

3.6 Linking key image for MProve+ when a source address is spent. 75

3.7 Performance comparison of MProve+ and MProve forG = Ristretto elliptic

curve. 81

ix

List of Tables

2.1 MProve and MProvisions Proof Generation and Verification Performance. . 52

4.1 Proof Generation and Verification Performance for Revelio and Simple . . 101

5.1 Proof Generation and Verification Performance of Nummatus and Simplus 116

D.1 Various Quantities Used in the Proof of Theorem 5.1 158

x

Chapter 1

Introduction

1.1 A Brief Introduction to Cryptocurrency

The design of a decentralized electronic cash system was an open problem for decades. The

problem was solved in 2008 when an anonymous programmer called Satoshi Nakamoto

proposed Bitcoin [2]. Bitcoin maintains a peer-to-peer network around the globe and

enables any two users to transfer bitcoins without depending on any central financial

institution. The security of Bitcoin is unaffected by the malicious behavior or failure of a

single node. Figure 1.1 depicts a typical cryptocurrency peer-to-peer network consisting

of full nodes, miners, and a public ledger of transactions called the blockchain.

Bitcoin is an open source software. Anybody can run the Bitcoin software and be-

come a node in the peer-to-peer network. However, full nodes in the network maintain and

store the blockchain. The blockchain is an append-only ledger containing all the transac-

tions which cannot be corrupted by a computationally bounded adversary. Typically in

a cryptocurrency system, each user has multiple public-secret key pairs. The public keys

of the users are associated with the outputs recorded in the blockchain. These outputs

contain coins which can be spent by a digital signature signed by the corresponding secret

keys. When Alice wants to transfer some coins to Bob, she specifies one of her outputs

as the input of the transaction and creates a new output using one of Bob’s public keys.

Bob can spend from this output later by a digital signature signed by his secret key. To

spend from the input, Alice produces a digital signature using her secret key. After con-

structing the transaction in the prescribed format, Alice sends it to one of the full nodes.

The full node checks the validity of the transaction by checking (a) the validity of the

1

Figure 1.1: Cryptocurrency network and blockchain.

signature, (b) that the input of the transaction contains unspent coins, and (c) that the

spent amount is not more than the amount corresponding to the input. If the transaction

is valid, the full node broadcasts this transaction to other full nodes and it gets relayed

in the entire network.

Miners are some special full nodes which compete with each other to add a new block

containing latest transactions to the blockchain. They try to solve a computationally

hard problem∗. The miner which solves the problem first, gets the chance to add the

new block to the blockchain and receives some newly generated coins as a block reward.

The successful miner broadcasts the new block across the network and all miners start to

compete for the next block. A transaction can only be confirmed when it appears in the

blockchain.

Blocks in the blockchain consists of a list of transactions and a block header (Figure

1.1). The block header contains the hash of all transactions of the previous block. One

of the major concerns in a digital currency system is double spending. A double spending

in Bitcoin occurs when a user spends from an already spent output. Suppose an output

is spent in a transaction which is recorded in a certain block in the blockchain. In this

transaction, the spent output serves as the input. To spend from this output again, an
∗Here, we consider only proof-of-work based cryptocurrency technologies.

2

entity has to replace this transaction in the block with another transaction. The new

transaction has the same input but different output than that of the previous transaction.

This modification makes all the subsequent blocks invalid as their block headers now have

changed. To validate the new transaction, the entity has to produce a chain of blocks

longer than the existing one recomputing all the subsequent block headers at once. This

is because in a proof of work based cryptocurrency system like Bitcoin, the longest version

of the blockchain is agreed to be the real version of the blockchain by the consensus rule.

Computing such a chain is hard for a computationally bounded individual adversary as

this involves competing with the computation power of the rest of the miners. As long

as the majority of the computation power is controlled by the honest miners, this is only

possible with a very small probability. The incentive for the miners to be honest lies

in the block reward and transaction fees which they continue to get only if the trust of

people in the corresponding cryptocurrency system stays alive. More precisely, it is not

of a miner’s interest to rewrite the block history and execute double spending. Because,

double spending reduces the faith in the integrity of the cryptocurrency system, which

lowers the price of the coin. As a result, all the earned coins of the miners become

worthless. Also the costly computation infrastructure developed by the miners is put to

waste.

Privacy focused cryptocurrencies. The above model for a cryptocurrency system

(mostly applicable to Bitcoin) suffers from some privacy issues. First of all in Bitcoin, the

amount in a transaction appears in the plaintext. Secondly in spite of some efforts† to

achieve privacy, the real identity of the sender and the receiver of a Bitcoin transaction

could be extracted out by several techniques [3–5]. These issues motivated the origin

of a new class of privacy focused cryptocurrency systems e.g. Monero [6], ZCash [7],

MimbleWimble [8, 9], Quisquis [10]. The goals of these proposals are mainly to provide

two privacy features: anonymity and confidentiality. The anonymity property keeps the

sender’s and the receiver’s identity in a transaction a secret whereas the confidentiality

property keeps the amount associated with a transaction a secret. We have considered

three privacy focused cryptocurrency systems namely Monero [6], MimbleWimble [8, 9],
†In a Bitcoin transaction, the identities of the owners of the inputs or outputs are not revealed.

Rather, only the corresponding public keys (P2PK transaction) or the hashes (P2PKH transaction) of

the public keys are revealed.

3

and Quisquis [10]. We have proposed proof of reserves protocols for exchanges possessing

these three cryptocurrencies. We discuss these protocols after giving a brief description

of a cryptocurrency exchange.

1.2 Cryptocurrency Exchange

When a new cryptocurrency emerges, the miners are the ones who can naturally earn coins

of that particular cryptocurrency by adding new blocks to the blockchain. When they

add new blocks, the newly generated coins (block reward) get transferred to the public

keys owned by them. The other source of their earnings are the transaction fees which

are included in every transaction. Later, the miners sell cryptocurrency coins to other

parties in return for fiat currency, goods, or services. In this way, a non-miner becomes

an owner of that particular cryptocurrency. When Bitcoin became popular and various

other cryptocurrencies came into existence, many people intended to possess, use, and

invest in cryptocurrencies. To meet the ongoing demand and bridge the gap between the

miners and non-miners, a new business platform, namely, the cryptocurrency exchange

emerged. A cryptocurrency exchange buys cryptocurrency from the miners and sells it

to its customers in exchange of fiat currency. The various services provided by a typical

cryptocurrency exchange are listed below.

1. A cryptocurrency exchange enables a non-miner to possess cryptocurrencies. They

provide their customer a custodial wallet which displays the amount of coins pur-

chased. A custodial wallet has the following advantages.

(a) In a typical cryptocurrency system, the knowledge of the secret key implies

the ownership of the amount associated with the public key. If this secret

key is lost or forgotten, then the entire amount associated with the public

key is lost forever. A cryptocurrency secret key is typically a 256 bit number.

Though there exists several techniques which convert a secret key into a shorter

alphanumeric string, it is still a difficult task for a layman to store multiple

secret keys securely. Instead, using a custodial wallet is much convenient. To

use her coins, a customer only needs to login to the website of the exchange.

In case the customer forgets her password, she can retrieve it back with the

help of the customer support and proper authentication. The safety of the

4

secret keys stored in the custodial wallets is the primary guarantee promised

by a cryptocurrency exchange.

(b) After Bitcoin, several other cryptocurrencies with dynamic market values emerged

and new cryptocurrencies are still being proposed. As a consequence, the trade

of one cryptocurrency with another has become a lucrative investment option.

Using the wallet provided by an exchange, a customer can trade between cryp-

tocurrencies. This trade is efficient and faster because the transaction does not

need to be recorded in the different underlying blockchains. The exchange pos-

sessing several cryptocurrencies can handle such transactions internally. The

exchange also provides several charts and trading suggestions to its customers.

In spite of the above advantages, investing in cryptocurrency using a cryptocurrency

exchange is not secure. Some of the customers’ concerns are listed below.

• There are many examples of loss of customers’ funds due to exit scams by the exchange

owners, hacking, theft, and internal fraud [11]. According to an anti-money laundering

report, an estimated US$1.9 billion worth of cryptocurrencies were reported as stolen

from exchanges in the year 2020 [12].

• Another concern is fractional reserves held by the exchanges. It is expected from a

cryptocurrency exchange that it should have full reserves i.e. the amount of cryptocur-

rency it owns should always be more than the amount it has sold to its customers.

However, an exchange might falsely claim that it owns more cryptocurrency than it

actually holds.

To address the customers’ concerns and make cryptocurrency exchanges transparent, it is

prescribed that an exchange should publish periodic proofs that it is solvent i.e. it owns

more coins than it has sold to its customers. Below, we discuss the several proposals for

a proof of solvency scheme.

1.3 Proof of Solvency Protocol

Typically, a proof of solvency protocol consists of three parts.

1. The exchange needs to prove that it owns a certain amount of coins (say ares) in the

corresponding blockchain. This proof is often termed as the proof of reserves/assets.

5

Such proofs are specific to the underlying blockchain technology. They can either

be publicly verifiable or verifiable by a designated auditor.

2. The exchange needs to prove that it has sold a specific amount of coins (say aliab)

to all its customers. This proof is known as the proof of liabilities. Such proofs in

general do not depend on the underlying blockchain technology. Rather the proofs

require verification by the customers of the exchange and the auditors.

3. The exchange needs to show ares ≥ aliab in order to prove that it is solvent.

Decker et al. [13] proposed a protocol for Bitcoin exchanges which only produces a binary

output indicating whether the total reserves are more than the total liabilities. This proof

of solvency protocol is privacy preserving in the sense that it does not reveal the exchange-

owned addresses, ares, or aliab. However, it is based on a trusted platform module. Below

we discuss various proposals for each part of a proof of solvency protocol.

Proof of reserves. Historically, proofs of reserves came into existence before proofs

of liabilities and proofs of solvency. In 2011, the Mt. Gox cryptocurrency exchange pub-

lished a transaction on the Bitcoin blockchain transferring 424,242 bitcoins from its wallets

to a previously revealed Bitcoin address [14]. This transaction might be considered as the

first proof of reserves proving that Mt. Gox indeed possessed a certain amount of bitcoins.

In 2019, Blockstream released a tool for Bitcoin exchanges which generates a transaction

including all unspent transaction outputs (UTXOs) of an exchange revealing the total re-

serves amount [15]. It also includes an invalid input to make the transaction invalid. This

is to prevent the exchange reserves from being spent. However, these techniques reveal

the total reserves amount of the exchange and all the owned Bitcoin addresses. This is

crucial business information which an exchange might not want to reveal. To address this

issue, Dagher et al. [1] proposed a protocol called Provisions for Bitcoin exchanges in the

year 2015. Provisions, consisting of a privacy focused proof of reserves protocol followed

by a privacy focused proof of liabilities protocol, proves that the exchange is solvent. It

was the first scheme which required no trusted setup and was based only on cryptographic

assumptions. In the first stage of Provisions, the proof of reserves protocol generates a

Pedersen commitment [16] Cres to ares. To generate Cres, an anonymity set is used which

contains all the exchange-owned Bitcoin addresses and some cover addresses. Thus the

protocol hides the total reserves amount in a commitment and blends all the exchange-

6

owned Bitcoin addresses in an anonymity set. The associated zero-knowledge argument of

knowledge‡ proves that only the amounts corresponding to the exchange-owned addresses

in the anonymity set are added to generate a commitment to the total reserves i.e. Cres

is indeed a commitment to the total reserves amount ares. In this way the privacy of the

exchange is preserved. However, the proof of reserves protocol in Provisions is specific

to the Bitcoin blockchain technology and cannot be used in other cryptocurrencies. We

discuss the Provisions’ proof of reserves in more detail in Section 2.3.2.

Proof of liabilities. Proof of liabilities is a blockchain independent protocol which

can be applied to any cryptocurrency technology. Maxwell proposed a protocol (summa-

rized in [18]) based on Merkle trees which helps an exchange to prove that aliab includes

the corresponding amount of a verifying customer. However this protocol reveals the de-

posit amount of the sibling customer in the tree and aliab to a verifying customer. The

proof of liabilities protocol in Provisions improved on it by publishing a commitment to

the balance of each customer and a Pedersen commitment to aliab. As mentioned above,

in the first stage of Provisions, the proof of reserves protocol generates a Pedersen com-

mitment Cres to the total reserves ares. In the next stage, the proof of liabilities generates

a Pedersen commitment Cliab to the total amount of bitcoins that the exchange has sold

to its customers i.e aliab. It also gives range proofs to prove that each customer’s amount

lies in the set {0, 1, 2, . . . , 251} where 251 is a bound on the maximum number of satoshis§

that could exist. This is to show that the exchange is not cheating by adding a negative

number while calculating Cliab. Any customer can verify that her amount is included in

Cliab by using some auxiliary information provided by the exchange. To prove solvency in

Provisions, another range proof is used to prove that CresC
−1
liab commits¶ to a non-negative

number in the last stage.

As discussed above, the proof of liabilities protocol in Provisions preserves the ex-

change privacy by not disclosing aliab. However, if a customer fails to check whether her

amount is included in aliab, the exchange could possibly omit that amount, effectively

reducing its liabilities. Recently, Chalkias et al. [19] proposed a scheme called Distributed

Auditing Proofs of Liabilities (DAPOL) which addresses this concern. DAPOL uses a
‡We follow the definition of zero-knowledge argument of knowledge as given in [17, Section 2.2].
§Smallest unit of bitcoin. 1 bitcoin=108 satoshis.
¶CresC

−1
liab commits to the amount ares− aliab due to the homomorphic property of Pedersen commit-

ment.

7

deterministic sparse Merkle tree along with range proofs on the commitment to each cus-

tomer’s amount and produces a Pedersen commitment to aliab. The authors proposed to

remove the limitation of Provisions’ proof of liabilities by using private information re-

trieval by the customers to view their inclusion proofs. In this way, the exchange cannot

have a prior idea about which customer is more likely to check their inclusion proof and

hence does not get any advantage if it decides to cheat. Further, they used a key distri-

bution function and a verifiable random function to deterministically shuffle the users in

the Merkle tree in every audit.

1.4 Our Contribution

The main contribution of this thesis is to propose proof of reserves protocols which do

not reveal sensitive information of an exchange. We summarize the major contributions

below.

• For Monero [6], we have proposed MProvisions modifying the proof of reserves proto-

col in Provisions. Then we propose MProve which performs better than MProvisions.

• Both MProve and MProvisions preserve the privacy of a Monero exchange to some

extent. However, the privacy of the exchange as well as the entire Monero network is

affected when the exchange spends from a source address used in the reserves proofs

in future. We have proposed a privacy enhancing proof of reserves protocol called

MProve+ to address this issue.

• For MimbleWimble [8, 9], we have proposed Revelio, another privacy focused PoR

protocol. Unlike Bitcoin and Monero, there is no address in a MimbleWimble-based

cryptocurrency. The coins are stored in Pedersen commitments which collectively

form the UTXO set. The Revelio scheme can be used for MimbleWimble based

cryptocurrencies like Grin [20] and Beam [21].

• Lastly, we have considered a recently proposed cryptocurrency scheme called Quisquis

[10]. Quisquis is a privacy focused cryptocurrency following account model unlike all

other cryptocurrencies discussed so far. For Quisquis, we have proposed Nummatus,

another privacy focused proof of reserves protocol.

8

All the proposed protocols are first such privacy focused proof of reserves protocols for

Monero, MimbleWimble, and Quisquis. All of them generate a Pedersen commitment

Cres to the total reserves amount ares. The Pedersen commitment Cres can be used with

the Provisions’ or DAPOL’s proof of liabilities protocol to prove that the exchange is

solvent in a privacy preserving manner. The proposed protocols are based on standard

cryptographic assumptions and do not require any trusted setup. The simulation results

show that they can be used in practice.

1.5 Organization of the Thesis

A brief summary of subsequent chapters is given below.

Chapter 2 starts with a discussion on the basic features of the Monero cryptocur-

rency. Then we discuss the existing non-private proof of reserves scheme for Monero.

Next, we describe the Provisions’ proof of reserves scheme and how it can be modified to

obtain a privacy focused proof of reserves protocol for Monero. We call this new scheme

MProvisions. Later, we propose another protocol, namely, MProve which performs better

than MProvisions. We give the performance comparison for both of them. Next, we

discuss the security properties and how the protocols behave with the privacy features of

Monero. We point out the drawback both the protocols have when the exchange spends

from a source address.

In Chapter 3, we address the above drawback using the techniques from Bullet-

proofs [17] and Omniring [22]. After giving a brief description of both the schemes, we

propose the MProve+ scheme which solves the drawback of both MProve and MProvisions

schemes. MProve+ gives logarithmic proof size with respect to the size of the anonymity

set as compared to the linear proof size in MProve and MProvisions. We give the per-

formance comparison between the MProve+ and MProve schemes. Then we discuss the

security properties of the MProve+ scheme and how it behaves with the privacy features

of Monero.

In Chapter 4, we have considered Grin, a MimbleWimble-based privacy focused cryp-

tocurrency. We start with a brief overview of Grin. Then we discuss the non-interactive

zero-knowledge proof of knowledge (NIZKPoK) signatures proving statements about dis-

crete logarithm relations as summarized by Camenisch and Stadler [23, 24]. These sig-

9

natures serve as the building block for both Revelio and Nummatus, a proof of reserves

scheme discussed in Chapter 5. Then we describe the Revelio scheme for MimbleWimble.

Next we discuss the security properties and give the performance analysis.

We start the Chapter 5 with a brief overview of Quisquis, an account based privacy

focused cryptocurrency. Then we give the proof generation and verification algorithms for

the Nummatus scheme. We conclude the chapter with security and performance analyses.

1.6 Desirable Properties of Proof of Reserves and Chal-

lenges

A privacy focused proof of reserves protocol computes an encryption of the total reserves

of an exchange and proves that the encryption indeed hides the actual reserves amount

using a zero-knowledge proof technique. A privacy focused proof of reserves protocol

should possess the following properties.

• Inflation resistance. This property roughly implies that it should be infeasible for

a computationally bounded exchange to claim that it possess more cryptocurrencies

than it actually owns.

• Collusion resistance. This property roughly implies that the protocol should prevent

two or more exchanges hiding a fractional reserves incident by sharing each other’s

funds.

• Privacy. The protocol should preserve the privacy of the exchange.

Proposing formal definitions of the above properties which are invariant to the underlying

cryptocurrency technology is observed to be hard and beyond the scope of the thesis.

Some of the major differences between the various cryptocurrency technologies are listed

below.

• In Monero, a spent address cannot be identified to be spent by default. Here, com-

pared to the other cryptocurrency technologies we have an additional requirement of

showing that the source addresses are not spent without affecting the privacy of the

exchange.

10

• In case of MimbleWimble, we do not have any addresses. Here, coins are stored in

outputs which are Pedersen commitments.

• Unlike the above two cryptocurrencies, Quisquis follows an account based model in-

stead of the UTXO model.

Because of the above differences, we found it difficult to intertwine the several pro-

posed proof of reserves techniques with some common definitions of the cryptographic

properties. Instead, we have discussed this properties in the context of each cryptocur-

rency technology separately.

Achieving privacy in the ideal sense is also very hard. To be precise, all the pro-

posed proof of reserves protocols reveal that the exchange owns some addresses in the

anonymity set. The proof size‖, generation time, and verification time of the proposed

protocols are linear in terms of the anonymity set. Therefore, it is not practical to declare

the set of all addresses/outputs/accounts of the corresponding cryptocurrency blockchain

as the anonymity set. The different aspects of privacy also vary when the underlying

cryptocurrency technology changes.

‖The proof size of the MProve+ protocol is logarithmic in terms of the anonymity set size. How-

ever, the generation and verification times are linear. As the Monero UTXO set is a very large and

monotonically growing set, it is not practical to set the anonymity set as the set of UTXO.

11

Chapter 2

MProvisions and MProve: Proof of

Reserves Protocols for Monero

2.1 Introduction

Monero is a privacy focused cryptocurrency scheme launched in the year 2014 [6, 25]. In

a Monero transaction, the scheme hides the identity of the sender, receiver, and also the

amount. In 2018, a developer with the moniker Stoffu Noether proposed and implemented

a proof of reserves protocol for Monero [26]. It was meant for an individual to reveal her

Monero holdings to others. If this protocol is used by a Monero exchange, the privacy of

the exchange is violated (as discussed in Section 2.3.1). In this chapter, we propose two

novel proof of reserves protocols for Monero, namely, MProvisions and MProve. Both the

protocols preserve the privacy of the exchange to some extent. MProvisions is constructed

by modifying the proof of reserves scheme for Bitcoin proposed in Provisions [1]. The

MProve construction, which outperforms the MProvisions protocol, utilizes ring signatures

and linkable ring signatures. We describe them after giving a brief overview of the Monero

scheme.

2.2 Overview of Monero

The design of the Monero scheme is based on the CryptoNote protocol [27]. The scheme

mainly comprises of three cryptographic primitives. In a Monero transaction, one-time

addresses are used to preserve the anonymity of the receiver, linkable ring signatures are

12

used to preserve the anonymity of the sender while preventing double spending, and the

ring confidential transaction scheme is used to preserve the confidentiality of the amount

associated with the transaction. We give an overview of these technologies.

2.2.1 Receiver Privacy and the Unlinkability Property of Monero

Monero public keys are points in the prime order subgroup of the Twisted Edwards elliptic

curve Ed25519 [25]. Let G denote this subgroup generated by the base point G. The

order q of the subgroup is a 253-bit prime. Monero secret keys are integers in the set

Zq = {0, 1, 2, . . . , q − 1}. In this chapter, we will use additive notation for the group

operation on the curve. The public key B ∈ G corresponding to the secret key b ∈ Zq is

given∗ by

B = bG = G+ · · ·+G︸ ︷︷ ︸
b times

.

In Monero, every user possesses a public key pair. For example, let (Bvk, Bsk) ∈ G2 be the

public key pair of Bob. The keys Bvk and Bsk are called the view public key and spend

public key respectively. The corresponding secret keys, bvk, bsk ∈ Zq such that Bvk = bvkG

and Bsk = bskG, are called the secret view key and secret spend key respectively. Bob

can share his key pair (Bvk, Bsk) with anyone who wants to pay him. Multiple one-time

addresses owned by Bob can be created using this public key pair.

Suppose in a Monero transaction txn, Alice wants to transfer the coins associated

with one of her own one-time addresses to Bob. She creates a one-time address for Bob

as follows. First, she chooses a random scalar r from Zq (we shall denote this by r $← Zq
henceforth) and computes the destination one-time address as P ′ = Hs(rBvk, oindex)G +

Bsk. Here Hs : {0, 1}∗ 7→ Zq is a hash function which maps its inputs to scalars and oindex

is the index of the new output in txn. Here the comma inside the hash function denotes

the bit-wise concatenation ‖ operation. Alice also computes the group element R′ = rG

and includes it in txn. Subsequently, txn containing (P ′, R′) is added to the blockchain.
∗In this chapter, we have used additive notation to be consistent with the description of the Monero

scheme in the literature [25, 28]. However in Chapter 3, we have used multiplicative notation to be

consistent with the Bulletproofs [17] and Omniring [22] papers. This abuse of notation is unavoidable

because of the usage of dual notations in the literature.

13

For every (P,R) in every transaction in the blockchain, Bob computes a group ele-

ment P ′′ = Hs(bvkR, oindex)G + Bsk. To compute P ′′, only the knowledge of secret view

key bvk is required. For (P ′, R′) in txn, P ′′ will be equal to P ′ as,

P ′′ = Hs(bvkR
′, oindex)G+Bsk = Hs(bvkrG, oindex)G+Bsk = Hs(rBvk, oindex)G+Bsk = P ′.

(2.1)

The above equality holds because rBvk = bvkrG = bvkR
′. This group element is called

the Diffie-Hellman shared secret. By verifying the equality in equation (2.1), Bob can

identify P ′ as a one-time address which was generated from his public key pair (Bvk, Bsk).

He calculates the secret key x′ of the one-time address P ′ as Hs(bvkR
′, oindex) + bsk which

holds because,

P ′ = Hs(rBvk, oindex)G+Bsk = Hs(bvkR
′, oindex)G+ bskG = (Hs(bvkR

′, oindex) + bsk)G.

So the knowledge of bvk (not bsk) is needed to identify that P ′ belongs to Bob. In this

way, the fact that P ′ belongs to Bob is hidden. However as discussed in the next section,

the knowledge of the secret key x′, hence both (bvk, bsk), is needed to spend funds from

P ′. So, Bob can outsource the task of monitoring the blockchain for fund receipt to a

third party by sharing only the secret view key bvk. This third party can identify all the

one-time addresses which belong to Bob. However, she cannot spend funds from them

without knowing bsk.

The above technique achieves one of the design goals of Monero called unlinkability

[27]. This property requires that given a one-time address P , a probabilistic polynomial

time (PPT) adversary can identify the corresponding public key pair with a probability

which is only neglibly better than random guessing.

2.2.2 Sender Privacy and the Untraceability Property of Monero

Let the source one-time address from which Alice pays Bob in txn be P and let x be its

secret key i.e. P = xG. Using a linkable ring signature, Alice hides the fact that P is

the source one-time address in txn. To prevent double spending, linkable ring signatures

proposed in [29] are used in Monero with some modifications [28]. First, Alice constructs

a message m by hashing the transaction prefix which consists of all the transaction data

except for the signatures. She creates a linkable ring signature σ on message m as follows:

14

1. She assembles a list of one-time addresses from the Monero blockchain to form

the ring R(txn) = (P0, P1, . . . , Pn−1) of txn such that Pj = P for exactly one j ∈

{0, 1, . . . , n−1}. Here {Pi}i∈{0,1,...,n−1},i 6=j are some random one-time addresses taken

from the Monero blockchain. They basically serve as cover addresses (a.k.a. decoy

addresses or mixins) to hide the source of txn i.e. Pj = P .

2. Let xi ∈ Zq be the secret key corresponding to Pi, i.e. Pi = xiG. Using the secret

key corresponding to Pj, she computes a group element called the key image I :=

xjHp(Pj) where Hp : G 7→ G is a hash function producing curve points as outputs.

3. She picks α and si, i = 0, 1, . . . , n − 1, i 6= j, randomly from Zq. Note that sj has

not been chosen.

4. She computes points Lj = αG, Rj = αHp(Pj), and integer cj+1 = Hs(R(txn),m, Lj, Rj).

5. Increasing j modulo n, she computes points Lj+1, Lj+2, . . . , Lj−1, Rj+1, Rj+2, . . . , Rj−1

and scalars cj+2, cj+3, . . . , cj as

Lj+1 = sj+1G+ cj+1Pj+1,

Rj+1 = sj+1Hp(Pj+1) + cj+1I,

cj+2 = Hs(R(txn),m, Lj+1, Rj+1),

...

Lj−1 = sj−1G+ cj−1Pj−1,

Rj−1 = sj−1Hp(Pj−1) + cj−1I,

cj = Hs(R(txn),m, Lj−1, Rj−1).

6. Finally, she computes sj = α − cjxj. As Lj and Rj were computed using α in step

4, this implies that

Lj = αG = (sj + cjxj)G = sjG+ cjPj,

Rj = αHp(Pj) = (sj + cjxj)Hp(Pj) = sjHp(Pj) + cjI.

7. The linkable ring signature on the message m is given by σ = (I, c0, s0, s1, . . . , sn−1).

Alice includes the linkable ring signature σ in txn and broadcasts txn onto the network

for inclusion in the blockchain. Anybody can verify that the signer of σ knows the secret

15

key of one of the one-time addresses in the ring R(txn) without knowing which one. The

verification of the linkable ring signature proceeds as follows:

1. The message m which was signed is recreated from the transaction prefix.

2. The ring R(txn) = (P0, P1, . . . , Pn−1) used to create the linkable ring signature σ is

read from the transaction.

3. Using σ, the integers ck, k = 1, 2, . . . , n− 1, are calculated as

L0 = s0G+ c0P0,

R0 = s0Hp(P0) + c0I,

c1 = Hs(R(txn),m, L0, R0),

...

Ln−2 = sn−2G+ cn−2Pn−2,

Rn−2 = sn−2Hp(Pn−2) + cn−2I,

cn−1 = Hs(R(txn),m, Ln−2, Rn−2).

4. Finally, cn−1 and sn−1 are used to calculate c′0 as

Ln−1 = sn−1G+ cn−1Pn−1,

Rn−1 = sn−1Hp(Pn−1) + cn−1I,

c′0 = Hs(R(txn),m, Ln−1, Rn−1).

5. The signature σ is accepted if c′0 equals the c0 given in σ. Otherwise, it is rejected.

As it is not revealed which address in R(txn) is spent in txn, Alice might try to spend

from P again in some other transaction. The key image I helps to detect this double

spending. To do this, the Monero blockchain maintains the set of already appeared key

images I. When I appears for the first time in the blockchain, it is included in I. When

Alice spends again from P in another Monero transaction, the same I appears in the

corresponding linkable ring signature. Then this transaction is rejected by the network

after verifying that I is already a member of I.

The signer ambiguity property of the linkable ring signature scheme prevents a PPT

adversary from deducing that I is originated from P with a probability non-negligibly

16

Figure 2.1: Linkable ring signature.

better than that of random guessing. Hence P continues to be a member of the set

of unspent one-time addresses, even after being spent in txn. The transaction txn only

reveals that I could have been originated from some one-time address in the ring R(txn).

This information can be represented by a graph having the one-time addresses in the

ring and the key image as vertices [30]. This is shown in Figure 2.1. When such graphs

from multiple transactions are combined, we will obtain a bipartite graph having the set

of one-time addresses as one vertex class and the set of key images as the other vertex

class. This bipartite graph will aid us in explaining the effect of MProve/MProvisions

and MProve+ (discussed in the next chapter) on the untraceability of Monero.

In this way, linkable ring signatures attain another design goal for Monero, namely

untraceability while preventing double spending. Roughly speaking, untraceability means

that given a transaction ring, no PPT adversary should be able to determine which address

in the ring is actually being spent, except with a probability which is negligibly better

than that of random guessing [27].

2.2.3 Amount Confidentiality and Public Verification of Monero

Transactions

The ring confidential transaction scheme hides the amount in a Monero transaction using

Pedersen commitments [16]. Suppose Alice wants to pay a coins† of Monero to Bob in txn.

In txn, Alice includes a Pedersen commitment C = yG + aH where y $← Zq is a random

†Coins in Monero are integers in the range {0, 1, 2, . . . , 264−1}. This is because the maximum number

of piconeros (smallest unit of currency in Monero) that could exist is 264 − 1.

17

blinding factor andH is another curve point with unknown discrete logarithm relationship

with G. In Monero, every one-time address is associated with a Pedersen commitment

hiding the corresponding amount‡. One might wonder how miners can validate Monero

transactions if the amounts are hidden. This is done as follows.

An interesting feature of Pedersen commitments is that a digital signature can prove

that the amount hidden in a Pedersen commitment is zero. This is because a Pedersen

commitment hiding the zero amount is of the form C = zG for some z ∈ Zq. The person

making the commitment can prove that C commits to a zero amount by providing a elliptic

curve digital signature algorithm (ECDSA) signature using C as the public key and z as

the secret key. Suppose a Pedersen commitment C is of the form C = zG+ aH for some

a 6= 0. For such C, no PPT adversary can compute an ECDSA signature by computing

z′ ∈ Zq such that C = z′G = zG+ aH. This is because the discrete logarithm relation of

H with respect to G is unknown. This property along with the homomorphic property of

the Pedersen commitments is used to provide transaction verification as described below.

Suppose, txn has one input and two outputs. Let ain be the input amount, a1out, a2out
be the output amounts, and f be the transaction fees. In particular, Alice wants to pay

a1out = a amount to Bob from her one-time address P containing amount ain > a. From

this amount, Alice pays Bob and the transaction fees f , and creates another one-time

address for herself to transfer the remaining amount a2out. Hence these amounts satisfy

the relation,

ain = a1out + a2out + f.

Let C(y, a) denote the commitment yG+aH for y, a ∈ Zq. The commitment to the input

amount C(yin, ain) will be recorded in the blockchain with the blinding factor yin known

to Alice. Alice will randomly choose blinding factors y1out, y2out and create the output

commitments

C(y1out, a
1
out) = y1outG+ a1outH,

C(y2out, a
2
out) = y2outG+ a2outH.

The transaction will contain C(y1out, a1out), C(y2out, a2out), and the transaction fees f . It will
‡This is true for RingCT transactions which were introduced in Monero in 2017 and made mandatory

soon after. In this thesis, we have only considered RingCT transactions.

18

also contain an ECDSA signature verifiable by the public key

C(yin, ain)− C(y1out, a1out)− C(y2out, a2out)− fH

=
(
yin − y1out − y2out

)
G+

(
ain − a1out − a2out − f

)
H

= zG+ 0H = C(z, 0),

where only Alice knows the secret key z. By calculating the public key C(z, 0) and

performing ECDSA signature verification, the miners and other full nodes are convinced

that the difference between the commitments and the fees term is a commitment to zero.

For simplicity, we denote a1out, y1out, and C(y1out, a
1
out) by a, y, and C respectively.

Bob needs to know a, y to open the commitment C and spend from P ′ in future. To

communicate a and y to Bob, Alice stores the following quantities in txn,

a′ = a⊕HK(HK(rBvk)), (2.2)

y′ = y ⊕HK(rBvk), (2.3)

where HK is the Keccak hash function which maps group elements to scalars. Apart from

Alice, only entities having access to the Bob’s secret view key bvk can recover a and y

from a′ and y′ as follows.

a = a′ ⊕HK(HK(bvkR
′)), (2.4)

y = y′ ⊕HK(bvkR
′). (2.5)

The above equations hold again because rBvk = bvkrG = bvkR
′.

Alice also has to give a proof that each output amount lies in the range {0, 1, 2, . . . , 264−

1}. Presently, Monero uses Bulletproofs [17] for range proofs which is discussed in Chapter

3.

Summary. Bob needs to know the secret key pair (bvk, bsk) to generate the secret

key x′ = H(bvkR
′, oindex) + bsk of the one-time address P ′ (R′ can be obtained from the

Monero blockchain using bvk as discussed above). To spend from P ′, Bob can sign a

linkable ring signature with x′. Whereas, the knowledge of the Diffie-Hellman shared

secret rBvk = bvkR
′ is needed to recover a, y from txn. Hence, the ability to generate x′

implies the ability to generate a, y. From the above discussion, it is clear that proving

knowledge of x such that P = xG is enough to prove the ownership of the amounts

corresponding to the one-time address P . We have built our proof of reserves protocols

on this principle.

19

2.3 Existing Proof of Reserves Protocols

We start this section with an overview of the proof of reserves protocol proposed by Stoffu

Noether [26]. We discuss how the privacy of a Monero exchange is affected if it uses this

protocol. Then we discuss the proof of reserves protocol for Bitcoin which is proposed in

the Provisions [1] paper. This description serves as the precursor of the description of the

MProvisions scheme in the next section.

2.3.1 Existing Reserves Proof for Monero

As described in Section 2.2.2, a one-time address cannot be identified as spent even if it

is spent in a transaction§. Hence in a Monero proof of reserves protocol, the exchange

needs to prove that its source one-time addresses contributing to the total reserves are

not spent already. As mentioned above, the first proof of reserves technique for Monero

was added to the official Monero client in 2018 by Stoffu Noether [26]. This tool helps a

user to prove that she holds more coins than a target amount. It can be invoked via a

command line tool or a remote procedure call to the Monero client. It proceeds as follows.

This tool takes the public key pair of a user and some target amount as inputs.

It attempts to find the smallest set of one-time addresses owned by the public key pair

whose amount sum exceeds the target amount. Once such a set is identified, the one-time

addresses in this set along with their corresponding key images and the Diffie-Hellman

shared secrets used in address generation are revealed as part of the proof of reserves.

For each address in the set, signatures proving that the Diffie-Hellman shared secret and

key image were correctly generated are included in the proof. Upon receiving the proof,

an auditor will mark an address as spent if its key image has already appeared in the set

of already appeared key images I. As the amount corresponding to an address can be

recovered from the Diffie-Hellman shared secret, the auditor can calculate the sum of the

amounts in unspent addresses as the reserve amount corresponding to a particular public

key pair.

By repeating the proof generation process over all the public key pairs owned by

it, an exchange could generate a proof of reserves. While the above technique serves the

purpose of proof of reserves, the exchange adopting this technique will eventually leak
§Unless it is traced by the methods given in [31–34].

20

all the one-time addresses it owns and the total reserves amount. This technique also

violates the privacy that a Monero exchange enjoys by default in the following ways.

1. As the verifier comes to know about all the one-time addresses generated from the

public key pairs of the exchange, the unlinkability property for the exchange-owned

one-time addresses is violated.

2. The exchange also has to reveal the key images of all the unspent one-time addresses

to prove that they are not spent. When the exchange spends from these one-time

addresses in some future Monero transactions, the same key images that have ap-

peared in the reserves proof, appear again. As a result, the one-time addresses

corresponding to these key images are revealed. Hence the untraceability property

for these Monero transactions is violated.

3. By sharing the Diffie-Hellman shared secrets, the exchange also reveals the amounts

corresponding to all of its unspent one-time addresses. Hence the amount confiden-

tiality for these addresses is also violated.

Because of these privacy issues, the above proof of reserves protocol is not suitable for an

exchange which is concerned about its privacy.

2.3.2 Provisions’ Proof of Reserves Protocol for Bitcoin

Figure 2.2: Provisions’ proof of reserves protocol.

The Provisions scheme [1] proposed the first privacy focused proof of reserves pro-

tocol for Bitcoin exchanges based on standard cryptographic assumptions and without

21

relying on any trusted setup. Figure 2.2 gives a schematic diagram presenting the main

idea behind the Provisions’ proof of reserves protocol (PPoRP). In Figure 2.2, the set

Punspent gives the set of all Bitcoin public keys containing unspent amounts at a partic-

ular state of the blockchain. The Provisions scheme supports only those address types

which correspond to a single public key. These include all pay-to-pubkey (P2PK) ad-

dresses and those pay-to-pubkey-hash (P2PKH) addresses which have been appeared as

transaction inputs at least once [1, Section 4.2]. The set Punspent is formed by assembling

all such unspent addresses in the Bitcoin unspent transaction outputs (UTXO) set. The

set Pown denotes the set of all exchange-owned public keys containing unspent amounts.

Let ares be the total reserves amount stored in all the public keys in the set Pown. To

preserve the privacy of the exchange, PPoRP takes the following steps.

1. To obfuscate the owned public keys, it publishes a set Panon such that Pown ⊆

Panon ⊆ Punspent.

2. To hide the amount ares, it publishes a Pedersen commitment Cres to the amount

ares computed using all the public keys in Panon.

3. The associated zero-knowledge argument of knowledge proves that only the amounts

corresponding to public keys in Pown are added to compute Cres.

To achieve the above, PPoRP uses sigma protocols which are converted into non-interactive

arguments of knowledge. The intuition behind PPoRP is given below.

Intuition behind PPoRP

We consider the Bitcoin elliptic curve group G with prime order q and generator G. Let

there be n public keys in the set Panon = {P1, P2, . . . , Pn}. Let ij, j ∈ {1, 2, . . . , |Pown|} be

the secret index of the jth owned public key in Panon. The exchange proceeds as follows.

• To prove ownership of the jth owned public key Yij ∈ Panon, the exchange has to

prove the knowledge of the secret key xij such that Yij = xijG. To do this without

revealing the secret indices, the exchange computes and publishes n group elements

as follows.

Li =

Yi + tiH if Yi ∈ Pown,

tiH if Yi /∈ Pown,

(2.6)

22

where H is another generator of G having unknown discrete logarithm relationship

with G and ti $← Zq is a randomly chosen scalar. Then for each public key Yi ∈ Panon,

the exchange needs to prove the following disjunctive statement,

Either it knows xi, ti such that Li = xiG+ tiH OR it knows ti such that Li = tiH.

(2.7)

• For each public key Yi ∈ Panon, the corresponding balance bal(Yi) can be obtained by

anybody querying the blockchain. In spite of this, the PPoRP enables the exchange

to hide its total reserves ares in a Pedersen commitment Cres. The total reserves of

the exchange is given by,

ares =

|Pown|∑
j=1

bal(Yij). (2.8)

First, for each Yi ∈ Panon, the exchange computes and publishes a group element

Bi = bal(Yi)G. Then, to obfuscate which amounts are added in Cres, the exchange

defines and publishes n group elements as,

Pi =

Bi + riH if Yi ∈ Pown,

riH if Yi /∈ Pown,

(2.9)

where ri $← Zq is a randomly chosen scalar. If the definition in equation (2.9) is true,

then the commitment¶ to the total reserves can be calculated as,

Cres =
n∑
i=1

Pi =

|Pown|∑
j=1

Bij +

(
n∑
i=1

ri

)
H =

|Pown|∑
j=1

bal(Yij)

G+

(
n∑
i=1

ri

)
H

= aresG+ rresH, (2.10)

where rres :=
∑n

i=1 ri.

The PPoRP gives the disjunctive proofs for the statement in equation (2.7) and also

proves that the definition given in equation (2.9) holds for each Pi. Below we discuss how

it is done.
¶In the description of PPoRP, the amount and the blinding factor in a Pedersen commitment are

associated with the bases G and H respectively. However in both MProvisions and MProve, the amount

and the blinding factor are associated with the bases H and G respectively to be consistent with the

convention of Monero.

23

Overview of PPoRP

For each public key Yi ∈ Panon, i ∈ {1, 2, . . . , n}, the exchange chooses a binary variable

si ∈ {0, 1} such that si = 1 when Yi ∈ Pown. When Yi /∈ Pown, si is set to 0. Using these

binary variables, equations in equation (2.6) and (2.9) can be alternatively expressed as,

Li = siYi + tiH, i ∈ {1, 2, . . . , n}, (2.11)

Pi = siBi + riH, i ∈ {1, 2, . . . , n}. (2.12)

The exchange needs to prove knowledge of {si, ri, ti}ni=1 such that equations in equation

(2.11) and (2.12) hold. It additionally needs to prove when si = 1, it knows xi such

that Yi = xiG. To do so, the exchange proves the knowledge of representation of Li with

respect to the bases G and H as,

Li = sixiG+ tiH = x̂iG+ tiH, i ∈ {1, 2, . . . , n}, (2.13)

where x̂i := sixi. Notice that the exchange knows xij for j ∈ {1, 2, . . . , |Pown|}. However,

it knows x̂i for all i ∈ {1, 2, . . . , n} i.e. x̂i = xi when si = 1, x̂i = 0 when si = 0.

Moreover subtracting an equation in equation (2.11) from an equation in equation (2.13)

for a particular i, we get

siYi = x̂iG. (2.14)

Equation (2.14) implies when si = 1, the exchange knows x̂i such that Yi = x̂iG, i.e. the

exchange owns the public key Yi.

For each i ∈ {1, 2, . . . , n}, the exchange proves knowledge of quantities si ∈ {0, 1},

and ri, ti, x̂i ∈ Zq such that the following statement holds.

Pi = siBi + riH ∧ Li = siYi + tiH ∧ Li = x̂iG+ tiH, (2.15)

where ∧ denotes the logical AND operator. For proving si ∈ {0, 1}, a sigma protocol is

used which utilizes the following fact,

x ∈ {0, 1} ⇐⇒ x(x− 1) = 0 ⇐⇒ x2 = x.

In the next section, we describe the design of MProvisions which is based on the above

idea.

24

2.4 Proposed Privacy Focused Proof of Reserves Pro-

tocols for Monero

In the last section, we discussed the privacy issues of the existing proof of reserves scheme

for Monero. We have also discussed PPoRP, a privacy focused proof of reserves scheme

for Bitcoin. In this section, we describe MProvisions, the proposed privacy focused proof

of reserves scheme for Monero which is obtained by modifying PPoRP. Then we describe

MProve, another proposed privacy focused proof of reserves scheme for Monero. Unlike

MProvisions which uses sigma protocols, MProve uses linkable ring signatures and ring

signatures as primitives. It also performs better than MProvisions.

2.4.1 MProvisions Protocol

First, let us try to use PPoRP directly for Monero. We consider the Monero elliptic curve

group G with prime order q and generators G and H having unknown discrete logarithm

relationship with each other. We assume that the decisional Diffie-Hellman problem is

hard in G.

Suppose a Monero exchange chooses n one-time addresses from the Monero blockchain

to construct the anonymity set Panon = {P1, P2, . . . , Pn}. The set Panon includes all its

owned one-time addresses which collectively form the set Pown. The set Panon also in-

cludes some randomly chosen one-time addresses which will work as cover addresses. Let

ij, j ∈ {1, 2, . . . , |Pown|} be the secret index of the jth owned one-time address in Panon.

The exchange proceeds as follows.

• To prove ownership of the jth owned one-time address Pij ∈ Panon, the exchange has

to prove the knowledge of the secret key xij such that Pij = xijG. To do this without

revealing the secret indices, the exchange publishes n group elements

Ni = siPi + fiH, i ∈ {1, 2, . . . , n}, (2.16)

similar to PPoRP, and proves knowledge of representation of each Ni with respect to

base pairs Pi, H and G,H. Here, si ∈ {0, 1}, fi $← Zq are the secret bit and scalar

chosen for each i respectively. The bit si is set to 1 when Pi is an exchange-owned

address. It is set to 0 when Pi is not an exchange-owned address. The alternative

25

representation of Ni with respect to bases G and H is given by,

Ni = sixiG+ fiH = x̂iG+ fiH, i ∈ {1, 2, . . . , n}. (2.17)

As in PPoRP, the difference between these two alternative representations of Ni (given

in equation (2.16) and (2.17)) for each i gives,

siPi = x̂iG. (2.18)

Equation (2.18) implies when si = 1, the exchange knows x̂i such that Pi = x̂iG,

i.e. the exchange owns the one-time address Pi.

• In Monero, each one-time address Pi ∈ Panon is already associated with a commitment

Ci to the corresponding amount ai i.e. Ci = yiG + aiH. To construct Cres, the

exchange selectively and homomorphically adds these commitments similar to PPoRP.

In particular for each i ∈ {1, 2, . . . , n}, the exchange chooses a blinding factor ki $← Zq
and publishes the following quantities.

Bi = siCi + kiG. (2.19)

Let ares denote the total reserves amount owned by the exchange. Let Cres = bG +

aresH, where b ∈ Zq is some blinding factor. We calculate Cres as,

Cres =
n∑
i=1

Bi. (2.20)

The amount corresponding to Ci is included in Cres only if si = 1, otherwise some

randomness (ki) is included with zero amount i.e. no H component is added.

Finally, the exchange proves knowledge of quantities si ∈ {0, 1}, and ki, ti, x̂i ∈ Zq such

that the following statement holds for each i ∈ {1, 2, . . . , n}.

Bi = siCi + kiG ∧ Ni = siPi + fiH ∧ Ni = x̂iG+ fiH. (2.21)

The above protocol does not work for Monero because of the following reason. In

Monero, it is not revealed whether a one-time address in the Monero blockchain is spent or

not (as discussed in Section 2.2.2). As a result, a malicious exchange could use the amount

of an already spent address while calculating the total reserves. Hence in a Monero proof

of reserves scheme, an exchange needs to prove that only the amounts corresponding to

the unspent one-time addresses are added to the total reserves amount ares besides proving

the ownership of these addresses.

26

Construction of MProvisions

The MProvisions scheme publishes the key images of the owned addresses to prove that

they are not spent. Suppose the exchange only publishes the key images Iij corresponding

to the exchange-owned addresses Pij for all j ∈ {1, 2, . . . , |Pown|}. It has to prove that

the published key image Iij is valid by showing knowledge of xij for each j such that the

following statements hold.

Pij = xijG ∧ Ii = xijHp(Pij), j ∈ {1, 2, . . . , |Pown|}. (2.22)

The verifier can check that Pij is an unspent address by checking that Iij is not a member

of the set of already appeared key images I. However as Pij is used to prove the validity

of Iij , the fact that Pij is an exchange-owned address is also revealed.

To obfuscate the source addresses, the exchange publishes a dummy key image Ii

for each Pi ∈ Panon \ Pown. First, note that for such a cover address Pi = xiG, the

exchange does not know the secret key xi and cannot calculate the corresponding key

image Ii = xiHp(Pi). Instead, the exchange chooses a long term‖ secret key kexch $← Zq.

For a cover address Pi /∈ Pown, the exchange generates a random scalar x′i = Hs(Pi, kexch).

Then it computes the dummy key image as Ii = x′iHp(Pi). For a one-time address

Pi = xiG, let its hash Hp(Pi) be equal to yiG for some yi ∈ Zq. Then if Pi ∈ Pown, the

triple (Pi = xiG,Hp(Pi) = yiG, Ii = xiHp(Pi) = xiyiG) is a Decisional Diffie-Hellman

(DDH) triple. However if Pi /∈ Pown, the dummy key image is Ii = x′iHp(P) = x′iyiG.

In this case, the triple (Pi, Hp(Pi), Ii) is not a DDH triple as x′i 6= xi. However, no PPT

distinguisher can distinguish between a real key image and a dummy key image owing to

the DDH assumption.

To prove the validity of the real key images without revealing them, the exchange

publishes n group elements,

Mi = siIi + eiH, i ∈ {1, 2, . . . , n}, (2.23)

where ei $← Zq is a randomly chosen scalar. The alternative representation of Mi with

respect to bases Hp(Pi) and H is given by,

Mi = x̂iHp(Pi) + eiH, i ∈ {1, 2, . . . , n}, (2.24)
‖The usage of the long term secret key kexch helps to preserve the privacy of the exchange even when

multiple MProvisions proofs are published. This is discussed in detail in Section 2.6.3.

27

where x̂i = sixi if Pi ∈ Pown, else x̂i = six
′
i. By the similar argument as above, the

difference between these two alternative representations of Mi (given in equation (2.23)

and equation (2.24)) for each i gives,

siIi = x̂iHp(Pi). (2.25)

Equation (2.25) implies when si = 1, the exchange knows x̂i such that Ii = x̂iHp(Pi).

Instead of statement in equation (2.22), the exchange proves knowledge of si ∈ {0, 1},

and ki, ei, fi, x̂i ∈ Zq such that the following statement holds for each i ∈ {1, 2, . . . , n}.

Bi = siCi + kiG ∧ Mi = siIi + eiH ∧ Ni = siPi + fiH

∧ Mi = x̂iHp(Pi) + eiH ∧ Ni = x̂iG+ fiH. (2.26)

As x̂i is the same for Mi and Ni, Ii = x̂iHp(Pi) ∧ Pi = x̂iG holds for the same x̂i when

si = 1. Hence the validity of the real key images is verified. The MProvisions scheme

uses sigma protocols which can be made non-interactive using public coin challenges

from the verifier and the Fiat-Shamir heuristic [35]. The argument of knowledge for the

MProvisions scheme is given below.

Argument of knowledge for MProvisions

Public data from blockchain: (Pi, Ci) for i ∈ {1, 2, . . . , n}.

Verifier’s input from prover: (Bi, Ii,Mi, Ni) for i ∈ {1, 2, . . . , n}.

Prover’s (the exchange) input: si ∈ {0, 1}, ki, ei, fi, x̂i ∈ Zq for i ∈ {1, 2, . . . , n}.

1. For i ∈ {1, 2, . . . , n}

(a) Prover chooses:

u
(1)
i , u

(2)
i , u

(3)
i , u

(4)
i , u

(5)
i

$← Zq.

(b) The prover sends to the verifier:

A
(1)
i = u

(1)
i Ci + u

(2)
i G, A

(2)
i = u

(1)
i Ii + u

(3)
i H,

A
(3)
i = u

(1)
i Pi + u

(4)
i H,A

(4)
i = u

(5)
i Hp(Pi) + u

(3)
i H

A
(5)
i = u

(5)
i G+ u

(4)
i H.

28

(c) The verifier replies with a challenge ci $← Zq.
(d) Prover replies with :

rsi = u
(1)
i + ci · si,

rki = u
(2)
i + ci · ki,

rei = u
(3)
i + ci · ei,

rfi = u
(4)
i + ci · fi,

rx̂i = u
(5)
i + ci · x̂i.

(e) The verifier accepts if:

rsiCi + rkiG
?
= ciBi + A

(1)
i ,

rsiIi + reiH
?
= ciMi + A

(2)
i ,

rsiPi + rfiH
?
= ciNi + A

(3)
i ,

rx̂i Hp(Pi) + reiH
?
= ciMi + A

(4)
i ,

rx̂iG+ rfiH
?
= ciNi + A

(5)
i .

(f) Run the protocol in Appendix B of Provisions [1] (with Bi as verifier’s input)

to prove knowledge of s′i ∈ {0, 1} and k′i ∈ Zq satisfying equation (2.19) (the

binding property of Pedersen commitments ensures that si = s′i and ki = k′i)

2. Finally the verifier computes Cres :=
∑n

i=1Bi as in equation (2.20) .

Before starting the verification process as described above, the verifier first reads all

the key images (Iis) published by the exchange. If any of them has already appeared in

the Monero blockchain i.e. a member of the set I, the verifier rejects the proof. Otherwise

the verifier continues with the proof.

The proof that the MProvisions scheme is a perfect special-honest-verifier-zero-

knowledge (SHVZK) protocol is given in Appendix A.1. The privacy features and the

other security properties are discussed in Section 2.6.

29

2.4.2 MProve Protocol

In this section, we describe MProve, which is another privacy focused proof of reserves

protocol for a Monero exchange giving better performance than MProvisions. MProve uses

ring signatures and linkable ring signatures as primitives. As the linkable ring signature is

discussed in Section 2.2.2, we give the ring signature generation and verification algorithm

before describing the protocol.

Ring Signatures

Given n public keys, a ring signature [36] on a message m proves that one of the cor-

responding secret keys was used to sign the message without revealing which one. Sup-

pose Alice wants to sign a message m using a ring signature involving the public keys

P = (P0, P1, . . . , Pn−1). She knows the secret key xj corresponding to Pj i.e. Pj = xjG,

for some j ∈ {0, 1, . . . , n− 1}. She generates the ring signature γ as follows:

1. She samples α and si, i ∈ {0, 1, . . . , n− 1}, i 6= j, randomly from Zq.

2. She computes a group element Lj = αG and an integer cj+1 = Hs(P,m, Lj) where

Hs : {0, 1}∗ 7→ Zq is a hash function.

3. Increasing j modulo n, she computes points Lj+1, Lj+2, . . . , Lj−1 and scalars cj+2,

cj+3, . . . , cj as

Lj+1 = sj+1G+ cj+1Pj+1,

cj+2 = Hs(P,m, Lj+1),

...

Lj−1 = sj−1G+ cj−1Pj−1,

cj = Hs(P,m, Lj−1).

4. Finally, she computes sj = α − cjxj. As Lj was computed using α in step 2, this

implies that

Lj = αG = (sj + cjxj)G = sjG+ cjPj.

5. The ring signature on the message m is given by γ = (c0, s0, s1, . . . , sn−1).

30

To check the validity of a ring signature, a verifier does the following:

1. Using the public key list P = (P0, P1, . . . , Pn−1), the message m, and the ring signa-

ture γ = (c0, s0, s1, . . . , sn−1), the verifier calculates the scalars ck, k = 1, 2, . . . , n−1,

as

L0 = s0G+ c0P0,

c1 = Hs(P,m, L0),

...

Ln−2 = sn−2G+ cn−2Pn−2,

cn−1 = Hs(P,m, Ln−2).

2. Finally, cn−1 and sn−1 are used to calculate c′0 as

Ln−1 = sn−1G+ cn−1Pn−1,

c′0 = Hs(P,m, Ln−1).

3. The signature γ is accepted if c′0 equals the c0 given in γ. Otherwise, it is rejected.

Note that c′0 = c0 holds only if the signer knows at least one secret key corresponding to

the public keys in the ring and computes γ according to the above signature generation

algorithm. However, the verifier does not get to know the secret index j while verifying

γ.

Motivating the MProve Protocol

In this section, we motivate the MProve protocol. Suppose an exchange owns a set of one-

time addresses Pown on the Monero blockchain, i.e. it knows the secret key corresponding

to each address in Pown. Like MProvisions, the exchange publishes a set of one-time

addresses Panon = {P1, P2, . . . , Pn} such that Pown is a subset of Panon. Let Iown =

{i | Pi ∈ Pown} be the set of indices∗∗ i such that the exchange knows the secret key

corresponding to Pi. Each address Pi ∈ Panon is associated with a unique Pedersen

commitment Ci on the Monero blockchain. Suppose Ci is a commitment to an amount ai,
∗∗In MProvisions, these indices were denoted by ij for j ∈ {1, 2, . . . , |Pown|}. Here, we have changed

the notation for the sake of convenience.

31

that is Ci = yiG+aiH for a blinding factor yi ∈ Zq. Then the Monero reserves amount of

the exchange is equal to ares =
∑

i∈Iown
ai. The goal of the MProve protocol is to ensure

that the exchange generates a Pedersen commitment Cres to an amount which is at most

ares. Using MProve, an exchange can generate Cres as a commitment to any amount of

the form
∑

i∈I ai where I ⊆ Iown. So Cres cannot be a commitment to an amount larger

than ares.

For each Pi ∈ Panon, the exchange publishes a Pedersen commitment C ′i and claims

that the commitment Cres =
∑n

i=1 (Ci − C ′i) is a commitment to an amount of Monero it

owns. To support this claim, the exchange publishes n ring signatures and n linkable ring

signatures.

• Let us consider the linkable ring signatures first. The ith linkable ring signature is

over the ring (Pi, C
′
i − Ci). Now there are two scenarios: Pi 6∈ Pown and Pi ∈ Pown.

– If Pi 6∈ Pown, then the exchange does not know the secret key corresponding to

Pi. To generate a linkable ring signature over the ring (Pi, C
′
i−Ci), the exchange

is forced to use the secret key corresponding to the public key C ′i − Ci. This in

turn forces the exchange to choose C ′i such that C ′i −Ci is of the form ziG where

zi ∈ Zq. On the contrary, if the exchange were to choose C ′i such that C ′i − Ci is

of the form ziG + aH for some nonzero a ∈ Zq, then to create the linkable ring

signature it would need to calculate z ∈ Zq such that zG = ziG+ aH. But this is

beyond the capability of the computationally bounded exchange as the discrete

logarithm of H with respect to G is unknown. Consequently, C ′i − Ci is forced

to be a commitment to zero whenever Pi 6∈ Pown. Thus the contribution of such

Ci − C ′i in Cres =
∑n

j=1

(
Cj − C ′j

)
is a commitment to the zero amount.

– If Pi ∈ Pown, the exchange knows the secret key corresponding to Pi. It can

generate the linkable ring signature using either this secret key or using zi when

C ′i is chosen such that C ′i − Ci = ziG. Doing the latter is not in the interest of

the exchange as it makes the contribution of Ci − C ′i in Cres =
∑n

j=1

(
Cj − C ′j

)
a commitment to the zero amount. So the exchange is forced to use the secret

key corresponding to Pi to generate the linkable ring signature whenever it wants

the amount in Ci to be included in Cres. An important consequence is that the

key images of all Pis used by the exchange as sources of funds are revealed (via

32

the linkable ring signature). This prevents the exchange from using an already

spent address as a source of funds as the key images of spent addresses appear on

the Monero blockchain. The verifier of an MProve proof rejects it if any of the

n key images generated by the linkable ring signatures has already appeared on

the Monero blockchain i.e. is a member of the set I. Note that the key images of

C ′i −Ci generated in the case when Pi 6∈ Pown can appear on the blockchain only

with a negligible probability if the zis are randomly chosen from Zq.

• Now let us motivate the need for the ring signatures. The ith ring signature is over

the ring (C ′i, C
′
i − Ci). Note that the linkable ring signature over (Pi, C

′
i − Ci) does

not impose any restriction on C ′i when Pi ∈ Pown, as the exchange can use the secret

key corresponding to Pi to generate the signature. Without any further constraint on

C ′i, an exchange can inflate the amount committed in Cres to a value larger than ares.

For example, suppose P1 ∈ Pown. For any b ∈ Zq such that b > ares and zi ∈ Zq, the

exchange can set

C ′1 = z1G+ C1 + (q − b)H, (2.27)

C ′i = ziG+ Ci for i = 2, 3, . . . , n,

and claim that the commitment to its reserves is given by

Cres =
n∑
i=1

Ci − C ′i = −
n∑
i=1

ziG+ bH. (2.28)

To prevent this, we require the exchange to publish a ring signature over the ring

(C ′i, C
′
i − Ci) for all i = 1, 2, . . . , n. Let us once again consider the two scenarios:

Pi 6∈ Pown and Pi ∈ Pown.

– If Pi 6∈ Pown, then the exchange uses the secret key corresponding to C ′i − Ci to

generate the linkable ring signature over the ring (Pi, C
′
i − Ci). The exchange

can then use the same secret key to generate the ring signature over the ring

(C ′i, C
′
i − Ci).

– If Pi ∈ Pown, then the exchange uses the secret key corresponding to Pi to gen-

erate the linkable ring signature over the ring (Pi, C
′
i − Ci), to avoid making the

contribution of Ci−C ′i to Cres a commitment to zero. To generate the ring signa-

ture over the ring (C ′i, C
′
i − Ci) while keeping the contribution of Ci − C ′i to Cres

33

nonzero, the exchange is forced to use the secret key corresponding to C ′i. This in

turn forces the exchange to choose C ′i to be of the form ziG where zi ∈ Zq, which

is a commitment to the zero amount. Consequently, the contribution of Ci − C ′i
to Cres =

∑n
j=1

(
Cj − C ′j

)
will be a commitment which has the same amount as

Ci. Note that a computationally bounded exchange would not be able to generate

the ring signature using the secret key corresponding to the C ′1 in equation (2.27)

as this would require calculating the discrete logarithm of H with respect to G.

To summarize, the linkable ring signature over (Pi, C ′i −Ci) forces the exchange to reveal

the key images of all Pi ∈ Pown it wants to use as sources of funds and also forces the

exchange to make Ci − C ′i a commitment to the zero amount whenever Pi 6∈ Pown. The

ring signature over (C ′i, C
′
i − Ci) forces the exchange to generate C ′i as a commitment

to either the zero amount or to the same amount as Ci. As the exchange claims that

Cres =
∑n

j=1(Cj −C ′j) is a commitment to its reserves, it can only include amounts in Ci

and that too only when Pi ∈ Pown. A precise description of the MProve protocol is given

next.

Proof Generation of the MProve Protocol

The MProve proof of reserves protocol proceeds as follows:

1. The exchange chooses a set of one-time addresses Panon = (P1, P2, . . . , Pn) from the

Monero blockchain such that it knows the secret keys corresponding to a subset

Pown of Panon. The set Panon is made public by the exchange.

2. For each Pi ∈ Panon, anybody can read the corresponding Pedersen commitment

Ci from the blockchain. Let Ci be the commitment to an amount ai with blinding

factor yi, i.e.

Ci = C(yi, ai) = yiG+ aiH. (2.29)

For Pi ∈ Pown, the exchange knows yi and ai. For Pi /∈ Pown, the exchange may

know yi and ai if it was the party which sent funds to Pi. In general, the exchange

will not know yi and ai for Pi /∈ Pown.

3. The exchange chooses a long term key†† kexch $← Zq. For each Pi ∈ Panon, the
††The reason for choosing this long term key is to ensure privacy for multiple proofs. This is discussed

in detail in Section 2.6.3.

34

exchange sets zi = Hs(kexch, Pi) and generates C ′i as

C ′i =

ziG if Pi ∈ Pown,

ziG+ Ci if Pi /∈ Pown.

(2.30)

4. For each i = 1, 2, . . . , n, the exchange publishes a regular ring signature γi on a

message m verifiable by the pair of public keys (C ′i, C ′i − Ci). The calculation of γi

is described in Appendix A.2.

5. For each i = 1, 2, . . . , n, the exchange publishes a linkable ring signature σi on a

message m verifiable by the pair of public keys (Pi, C ′i − Ci). The calculation of σi

is described in Appendix A.3.

6. The exchange publishes a commitment Cres which satisfies the equation

n∑
i=1

Ci = Cres +
n∑
i=1

C ′i. (2.31)

The exchange claims that Cres is a Pedersen commitment to the amount of Monero

it owns.

The following theorem assures us that an honest exchange can correctly generate a com-

mitment to its total reserves using MProve.

Theorem 2.1. If an exchange follows the MProve protocol honestly, then Cres will be a

commitment to the amount

ares =
∑
i∈Iown

ai. (2.32)

Proof. Consider the definition of C ′i given in equation (2.30).

• If Pi ∈ Pown, C ′i is a commitment to zero. Hence
∑

i∈Iown
C ′i is a commitment to the

zero amount.

• If Pi /∈ Pown, C ′i − Ci is a commitment to zero. Let Iunknown = {i | 1 ≤ i ≤ n, Pi /∈

Pown} denote the set of indices i such that the exchange does not know the secret key

corresponding to Pi. Then
∑

i∈Iunknown
(C ′i −Ci) is a commitment to the zero amount.

35

Rearranging equation (2.31), we get∑
i∈Iown

Ci = Cres +
∑
i∈Iown

C ′i +
∑

i∈Iunknown

(C ′i − Ci). (2.33)

As the last two sums on the right hand side are commitments to zero, Cres and
∑

i∈Iown
Ci

must be commitments to the same amount. Since∑
i∈Iown

Ci =
∑
i∈Iown

(yiG+ aiH)

= aresH +
∑
i∈Iown

yiG, (2.34)

Cres is a commitment to ares.

Proof Verification

The output of an exchange in the MProve protocol consists of the following:

• A set of one-time addresses (P1, P2, . . . , Pn).

• The commitments C ′1, C ′2, . . . , C ′n created by the exchange.

• The regular ring signatures γi = (di0, t
i
0, t

i
1) for i = 1, 2, . . . , n.

• The linkable ring signatures σi = (Ii, c
i
0, s

i
0, s

i
1) for i = 1, 2, . . . , n.

• The message m used to create γi and σi.

• The commitment Cres which the exchange claims to be a commitment to its total

reserves.

Verification involves the following operations:

1. The verifier checks that none of the key images Ii published by the exchange as part

of the signatures σi appear in the set of already appeared key images I. If a key

image appears in I, the verifier rejects the proof of reserves as it implies that the

funds in the corresponding one-time address Pi have already been spent. If none of

the key images have appeared in I, the verifier continues with proof verification.

2. The verifier reads the commitments Ci corresponding to the Pis from the blockchain.

3. The public key C ′i − Ci is computed for each i.

36

4. The public key pair (C ′i, C ′i − Ci) is used to verify the regular ring signatures γi.

5. The public key pair (Pi, C ′i − Ci) is used to verify the linkable ring signatures σi.

6. Equality in equation (2.31) is verified using the Cis, C ′is, and Cres.

Before discussing the security properties for both MProve and MProvisions, we describe

a privacy issue both the schemes suffer from.

2.5 Drawback of MProve and MProvisions

When a source address is spent by the exchange in a future Monero transaction, then that

transaction becomes traceable because of an MProve/MProvisions proof. In this section,

we explain how this happens. First, let us consider a scenario which affects any Monero

proof of reserves protocol that reveals the key images of exchange-owned addresses.

Example 2.1. Consider a Monero transaction txn where a Monero exchange Ex is spend-

ing from a one-time address P . Before this transaction, the exchange has published some

reserves proofs where P has been used as a source address. As a result, the corresponding

key image (say I) of P has appeared in those reserves proofs. When P is being spent in

txn, the same key image I will appear again in txn. As the same I has appeared in the

reserves proofs published by Ex and in txn, the fact that Ex is spending in txn is revealed.

The drawback shown in Example 2.1 exists in every proof of reserves protocol which

has to reveal the key images of the source addresses explicitly to prove that they are

not spent. The proof of reserves protocol proposed by Stoffu Noether [26], MProve,

MProvisions, and MProve+ (discussed in the next chapter) suffer from this drawback.

We discuss the challenges involved in proving that the source addresses are not spent

without revealing their key images in the next chapter. For now, we discuss the case

when the MProve scheme is used as the proof of reserves protocol in Example 2.1.

Effect of an MProve Proof on Monero Transactions

In Figure 2.3, we consider a single MProve proof where the size of the anonymity set is

n. There are n key images I1, I2, . . . , In corresponding to the n linkable ring signatures.

Among these key images, some are real key images (originated from a one-time address)

37

Figure 2.3: Linking key image for MProve when a source address is spent.

and some are dummy key images (originated from a group element which is not a one-

time address). Consider the key image Ij which is generated from a one-time address Pj.

Suppose there is a PPT adversary A who wants to obtain the real originator of Ij. When

A observes this MProve proof, she infers that Ij could have originated either from Pj or

from the group element C ′j−Cj. Hence Ij is connected to both Pj and C ′j−Cj in Figure 2.3.

Defining Porig(Ij) as the set of possible originators of Ij, we have Porig(Ij) = {Pj, C ′j−Cj}.

When the exchange spends from Pj in a future Monero transaction txn, Ij appears again.

Let the ring of txn be R(txn). The set R(txn) must contain Pj as Pj is the source address

being spent in txn. However, the group element C ′j − Cj cannot be an element in the set

R(txn) as it is unlikely to be a valid one-time address. The view of A in this situation is

shown in terms of bipartite graphs in stage 1 of Figure 2.3. As the intersection between

the sets Porig(Ij) and R(txn) is a singleton set {Pj}, A successfully links Ij with Pj. This

has been shown in stage 2 of Figure 2.3. So the probability that A successfully outputs

Pj as the originator for Ij is,

Pr[A(Ij,Porig(Ij),R(txn)) = Pj] = 1. (2.35)

Effect of an MProvisions Proof on Monero Transactions

Next we consider the scenario when the MProvisions scheme is used in Example 2.1.

In Figure 2.4, we consider a single MProvisions proof where there are n key images

38

Figure 2.4: Linking key image for MProvisions when a source address is spent.

I1, I2, . . . , In corresponding to the n one-time addresses in the anonymity set. If a one-

time address is a source, then the key image is the real key image of it. For a cover one-time

address, the associated key image is not its real key image. Now consider the same PPT

adversary A who wants to obtain the real originator of some Ij ∈ {I1, I2, . . . , In}. By

viewing the MProvisions proof she infers that either Pj is the real originator of Ij or Ij

is not at all a key image. In any case the set Porig(Ij) is the singleton set {Pj}. Next

consider the situation when txn appears in the blockchain containing Pj in R(txn) and

Ij as its key image. Now A is assured that the key image Ij is a real key image and Pj

originates it. In this case also we have,

Pr[A(Ij,Porig(Ij),R(txn)) = Pj] = 1. (2.36)

Implication. For both MProve and MProvisions, txn loses the untraceability prop-

erty (discussed in Section 2.2.2). In particular, it is revealed that the exchange is spending

Pj in txn and the corresponding key image is Ij. As Pj is known to be spent, it cannot

be used as a cover address in any transaction henceforth. Moreover, the effective ring

sizes reduce by 1 for all transactions which have used Pj as a cover address so far. In

spite of the above drawback, both the schemes exhibit the following security and privacy

properties.

39

2.6 Security Properties of MProve and MProvisions

In this section, we describe the various security properties of both MProve and MProvi-

sions. We shall sometimes find it convenient to describe a property of the MProve protocol

first. Then we show that the MProvisions protocol also exhibits a similar attribute. Both

the protocols have three main properties, namely, collusion resistance, inflation resistance,

and pre-spend privacy. The collusion resistance property prevents two or more exchanges

from sharing a common one-time address as a source of funds while generating a reserves

proof. The inflation resistance property prevents an exchange from publishing a com-

mitment Cres to an amount which exceeds the actual reserves amount. The pre-spend

privacy property provides privacy to the exchange given that it has not spent from a

source one-time address used in the reserves proofs.

2.6.1 Collusion Resistance

In both MProve and MProvisions protocols, the exchange has to publish a key image I

for each address P in the anonymity set. If the amount corresponding to P contributes

to the total reserves, then the following relation holds,

P = xG ∧ I = xHp(P), (2.37)

where x is the secret key corresponding to P . Note that for a given P , the key image I in

equation (2.37) is unique. Hence if two PPT exchanges use a common one-time address as

a source address to generate reserves proofs, the key image corresponding to that one-time

address will appear in both the reserves proofs. Thus a verifier can easily detect collusion

between exchanges. If we assume the exchanges are PPT, then they can generate different

key images for the same source address only with a negligible probability. For MProve,

this follows from the unforgeability of the linkable ring signatures. For MProvisions, it

follows from the unforgeability of the argument of knowledge. Therefore, both the schemes

are collusion resistant.

2.6.2 Inflation Resistance

For the MProve scheme, we shall prove that a PPT exchange cannot generate a Pedersen

commitment to an amount which is more than what it owns. It can always omit an

40

amount corresponding to some owned address Pj, j ∈ Iown, by setting C ′j − Cj = wjG

for some wj ∈ Zq and signing the ring signature γj using wj. Note that the linkable ring

signature σj will always need to be generated by the secret key corresponding to Pj for

j ∈ Iown. Generating σj using the secret key corresponding to C ′j − Cj for j ∈ Iown can

reveal that the address Pj is owned by the exchange (as discussed in Section 2.6.3). If Pj

is not owned by the exchange, it cannot include the corresponding amount in Cres. To

show this, we give the following theorem which is proved in Appendix A.4.

Theorem 2.2. Suppose an exchange creates a proof of reserves with commitment Cres =

C(yres, ares) such that the reserves proof is accepted by the verification procedure in Section

2.4.2. Then the amount ares must be of the form
∑

i∈I1 ai for any set I1 ⊆ Iown i.e. ares =∑
i∈I1 ai.

For an accepted MProvisions proof, the statement in equation (2.26) holds for each i ∈

{1, 2, . . . , n} which is given as,

Bi = siCi + kiG ∧ Mi = siIi + eiH ∧ Ni = siPi + fiH

∧ Mi = x̂iHp(Pi) + eiH ∧ Ni = x̂iG+ fiH.

The above statement in turn implies that the amount in Ci is added to Bi, only if the

exchange knows x̂i such that Pi = x̂iG ∧ Ii = x̂iHp(Pi) holds i.e. the exchange owns Pi.

As Cres is computed by adding‡‡ Bi for each i ∈ {1, 2, . . . , n}, a PPT exchange cannot

inflate the total reserves amount.

2.6.3 Pre-spend Privacy

We have discussed the privacy issue when the exchange spends from a one-time address

which is used as a source address in an MProve/MProvisions proof in Section 2.5. In this

section, we consider the scenario when the exchange has not spent from any of the source

one-time addresses used in MProve/MProvisions proofs. We also consider the general

scenario when multiple reserves proofs are published. First, we discuss the necessity of

the long term keys when multiple proofs are generated for both the protocols.
‡‡Checked in Step 2 of the MProvisions protocol.

41

Multiple Proofs and the Long Term Keys

First, we shall consider the MProve protocol. Suppose in equation (2.30) instead of using

the long term key kexch, the exchange randomly picks zi ∈ Zq and generates C ′i as

C ′i =

ziG if Pi ∈ Pown,

ziG+ Ci if Pi /∈ Pown.

Suppose a Monero exchange has published two MProve proofs with anonymity sets P(1)
anon

and P
(2)
anon. Let P(1)

own and P
(2)
own be the corresponding subsets of exchange-owned addresses.

Suppose a one-time address Pi belongs to both the anonymity sets, i.e. Pi ∈ P
(1)
anon∩P(1)

anon.

Let Ci be the Pedersen commitment corresponding to Pi on the Monero blockchain. Let

C ′i,1, C
′
i,2 be the commitments generated by the exchange for such a Pi in the two MProve

proofs. If Pi belongs to P
(1)
own ∩ P

(2)
own, then the key images revealed in the linkable ring

signatures over the rings (Pi, C
′
i,1 − Ci) and (Pi, C

′
i,2 − Ci) in the two MProve proofs

will be the same. On the other hand, suppose Pi does not belong to P
(1)
own ∩ P

(2)
own. Now

suppose the exchange chooses zi,1 and zi,2 independently and randomly from Zq to generate

C ′i,1 = zi,1G+Ci and C ′i,2 = zi,2G+Ci. Then the key images revealed in the linkable ring

signatures over the rings (Pi, C ′i,1 − Ci) and (Pi, C
′
i,2 − Ci) in the two MProve proofs will

be different. This difference will lead an observer to conclude that Pi is not an exchange-

owned address. To avoid this leakage of information, the MProve protocol chooses the

scalars zi for the commitments C ′i corresponding to cover addresses in the anonymity set

as deterministic functions of the addresses themselves. It chooses a long term key kexch

and sets zi = Hs(kexch, Pi) where Hs (·) is a cryptographic hash function with outputs in

Zq.

Now consider the MProvisions scheme. The long term key kexch is again used for

a similar reason. If the key images of cover addresses revealed by multiple MProvisions

proofs change from one proof to another, then an observer would be able to identify them

as addresses not owned by the exchange.

Omission of Amounts Corresponding to Exchange-Owned Addresses

If an exchange wants to omit the amount corresponding to an owned address Pi in an

MProve/MProvisions proof, it cannot treat Pi as a cover address. It must reveal the true

key image of Pi while nullifying the contribution of Ci to Cres by using the disjunctive

42

nature of the proofs. Otherwise, the fact that Pi is owned by the exchange will be revealed.

To see this, consider once again the scenario of two MProve proofs where Pi ∈ P
(1)
own∩P(2)

own.

Suppose while publishing the two MProve proofs, the exchange wants to use Pi as a cover

address in the first proof and use it as a source address in the second proof. To do so,

suppose the exchange generates the first linkable ring signatures σi,1 using the secret key

corresponding to C ′i,1−Ci and the second linkable ring signature σi,2 using the secret key

corresponding to Pi. Then the key images in the two linkable ring signatures corresponding

to Pi will be different and an adversary can identify that Pi is an exchange-owned address.

Similarly, in MProvisions, the exchange should publish the real key image of Pi in both

the proofs. When it wants to use Pi as a source address, it should set the corresponding

si = 1. And when it wants to use Pi as a cover address, it should set the corresponding

si = 0.

Next, we discuss the privacy of both the protocols given that the exchange has not

spent from any source addresses in the reserves proofs.

Pre-spend Privacy for MProve

We consider the scenario when a Monero exchange publishes f(λ) MProve proofs where

f(λ) denotes a polynomial of the security parameter λ. Let the size of the ith anonymity

set be ni. We denote the ith MProve proof by
(
P(i),C(i),C′(i),Γ(i),Σ(i),mi, C

(i)
res

)
where,

P(i) = (Pi,1, Pi,2, . . . , Pi,ni), (2.38)

C(i) = (Ci,1, Ci,2, . . . , Ci,ni), (2.39)

C′
(i)

= (C ′i,1, C
′
i,2, . . . , C

′
i,ni

), (2.40)

Γ(i) = (γi,1, γi,2, . . . , γi,ni), (2.41)

Σ(i) = (σi,1, σi,2, . . . , σi,ni), (2.42)

and mi denotes the message to be signed by the linkable ring signatures and ring sig-

natures of the ith anonymity set. We denote the f(λ) MProve proofs as MPeact =(
P(i),C(i),C′(i),Γ(i),Σ(i),mi, C

(i)
res

)f(λ)
i=1

. We want to show that MPeact does not reveal

any information of the exchange apart from the fact that the commitments to the total

reserves are valid. For this, we construct a simulator SMPe which has access to MPeact

but does not know any secret information of the exchange. The simulator proceeds as

follows.

43

She chooses a long term key ksim $← Zq. To construct the ith simulated MProve proof,

she reads the ith MProve proof
(
P(i),C(i),C′(i),Γ(i),Σ(i),mi, C

(i)
res

)
. In the ith simulated

proof, she keeps
(
P(i),C(i),mi

)
as it is and changes the other elements in the following

manner. She sets Ĉ ′i,k = Ci,k + yi,kG, where yi,k = Hs(ksim, Pi,k) for all k ∈ {1, 2, . . . , ni}.

She computes the signatures γ̂i,k and σ̂i,k in the simulated proof using the knowledge

of yi,k for all k ∈ {1, 2, . . . , ni}. In particular, the set of public keys in the signatures

γ̂i,k and σ̂i,k are (Ĉ ′i,k, Ĉ ′i,k − Ci,k) and (Pi,k, Ĉ ′i,k − Ci,k) respectively. Each of them are

signed with yi,k where Ĉ ′i,k −Ci,k = yi,kG. She constructs the vectors Ĉ′
(i)
, Γ̂(i), Σ̂(i) with

the computed quantities Ĉ ′i,k, γ̂i,k, and σ̂i,k respectively for all k ∈ {1, 2, . . . , ni}. She

computes Ĉ(i)
res as,

Ĉ(i)
res =

ni∑
j=1

Ci,j −
ni∑
j=1

Ĉ ′i,j. (2.43)

She sets MPesim =
(
P(i),C(i), Ĉ′

(i)
, Γ̂(i), Σ̂(i),mi, Ĉ

(i)
res

)f(λ)
i=1

.

If there exists no PPT distinguisher DMPe that can distinguish between MPeact and

MPesim (except with a negligible probability of success), then we can say MPeact does

not reveal any information about the exchange. In particular, we define the privacy

experiment MProvePriv for the MProve scheme as follows.

1. SMPe sets MPe0 = MPesim and MPe1 = MPeact.

2. SMPe chooses a bit b $← {0, 1} randomly.

3. SMPe sends MPeb to DMPe.

4. DMPe outputs a bit DMPe(MPeb) as a prediction of b.

Notice that Pr[DMPe(MPeb) = b] = 1
2
can be obtained by random guessing. We give the

following definition.

Definition 2.1. The MProve protocol is said to provide pre-spend privacy if for every

PPT DMPe in the MProvePriv experiment, there exists a negligible function negl(λ) of the

security parameter λ such that,∣∣∣ Pr[DMPe(MPeb) = b]− 1

2

∣∣∣≤ negl(λ). (2.44)

Here we are considering that the exchange has not spent from any source addresses after

publishing the reserves proofs.

44

Notice that if the exchange spends from any of the source addresses, then it becomes

easy to distinguish between MPe1 and MPe0. This is because the proofs in MPe1 will

contain one or more key images (corresponding to the source addresses) which have ap-

peared in the blockchain (Section 2.5). On the other hand, the proofs in MPe0 will have

no such key images. However this is not the case when the cover addresses in the proofs

are spent. The key images of cover addresses match neither those in MPe1 nor those in

MPe0. We have the following theorem.

Theorem 2.3. The MProve protocol provides pre-spend privacy in the random oracle

model under the DDH assumption.

The proof of Theorem 2.3 uses a hybrid argument [37, Section 11.2.2] and is given

in Appendix A.5.

Pre-spend Privacy for MProvisions

Next we consider the scenario when an exchange has published f(λ) MProvisions proofs

where f(λ) is a polynomial of the security parameter λ. We again assume that the

exchange has not spent from any of the one-time addresses used as sources in those

published proofs. We denote the ith MProvisions proof as

MPsacti = (Pi,j, Ci,j, Bi,j, Ii,j,Mi,j, Ni,j,Txi,j)
ni
j=1,

where Txi,j =
(
A

(1)
i,j , A

(2)
i,j , A

(3)
i,j , A

(4)
i,j , A

(5)
i,j , ci,j, rsi,j , rki,j , rei,j , rfi,j , rx̂i,j

)
is the transcript and

ni is the size of the ith anonymity set. We denote the f(λ) MProvisions proofs by

MPsact = (MPsacti)f(λ)i=1 . Similar to MProve, we consider a PPT simulator SMPs and a PPT

distinguisher DMPs. The simulator SMPs has access to MPsact. To construct the simulated

proof, the simulator SMPs proceeds as follows.

She reads the ith MProvisions proof MPsacti. In MPsacti, she keeps (Pi,j, Ci,j)
ni
j=1

as it is and changes the other elements in the following manner. She chooses a long

term key ksim $← Zq. She computes a random scalar x′′i,j = Hs(ksim, Pi,j) and sets Îi,j =

x′′i,jHp(Pi,j) for all j ∈ {1, 2, . . . , ni}. She chooses k̂i,j, êi,j, f̂i,j $← Zq and sets B̂i,j =

k̂i,jG, M̂i,j = êi,jH, N̂i,j = f̂i,jH. She computes the ith simulated MProvisions proof

as MPssimi =
(
Pi,j, Ci,j, B̂i,j, Îi,j, M̂i,j, N̂i,j, T̂xi,j

)ni
j=1

following the MProvisions protocol,

where T̂xi,j = (Â
(1)
i,j , Â

(2)
i,j , Â

(3)
i,j , Â

(4)
i,j , Â

(5)
i,j , ĉi,j, r̂si,j , r̂ki,j , r̂ei,j , r̂fi,j , r̂x̂i,j) is the transcript. She

45

performs the same operation for all i ∈ {1, 2, . . . , f(λ)} and sets the f(λ) simulated proof

as MPssim = (MPssimi)
f(λ)
i=1 .

We define the privacy experiment MProvisionsPriv for the MProvisions scheme as

follows.

1. SMPs sets MPs0 = MPssim and MPs1 = MPsact.

2. SMPs chooses a bit b $← {0, 1} randomly.

3. SMPs sends MPsb to DMPs.

4. DMPs outputs a bit DMPs(MPsb) as a prediction of b.

Now we give the following definition.

Definition 2.2. The MProvisions protocol is said to provide privacy if for every PPT

DMPs in the MProvisionsPriv experiment, there exists a negligible function negl(λ) of

the security parameter λ such that,∣∣∣ Pr[DMPs(MPsb) = b]− 1

2

∣∣∣≤ negl(λ). (2.45)

Here we are considering that the exchange has not spent from any source addresses after

publishing the reserves proofs.

The intuition behind Definition 2.2 is similar to that of Definition 2.1, i.e. MPs0 is

constructed without the knowledge of which addresses in the anonymity sets are exchange-

owned, their secret keys or the amounts. If no PPT distinguisher can distinguish between

MPs0 and MPs1, the real MProvisions proofs, then it is verified that the MProvisions

protocol preserves the privacy of the exchange. Like MProve, if the exchange spends from

some of the source addresses then it is trivial to distinguish between MPs1 and MPs0 by

matching the key images of the source addresses (Section 2.5). However, this is not the

case if the cover addresses are spent by their owners. This is because the key images

of the cover addresses match neither the dummy key images in MPs1 (generated from

Hs (kexch, Pi,j)) nor the dummy key images in MPs0 (generated from Hs (ksim, Pi,j)). Now

we give the following theorem.

Theorem 2.4. The MProvisions protocol provides privacy in the random oracle model

under the DDH assumption.

The proof of Theorem 2.4 is given in Appendix A.6.

46

2.7 Effect of Proposed Protocols on Monero Privacy

The major privacy properties for the Monero scheme are amount confidentiality, un-

linkability, and untraceability. We described these properties in Section 2.2. A privacy

focused proof of reserves protocol should not violate the privacy features of the underly-

ing cryptocurrency scheme. Below we discuss how the proposed protocols MProve and

MProvisions affect the privacy features of Monero.

2.7.1 Effect on the Untraceability Property of Monero

As discussed in Section 2.2.2, a Monero transaction is called untraceable when a PPT

adversary cannot determine which one-time address in the ring is actually being spent

i.e. originates the associated key image. Here by saying that the one-time address P

originates the key image I, we mean that there exists a scalar x ∈ Zq such that P =

xG ∧ I = xHp(P) holds. As discussed in Section 2.5, a Monero transaction becomes

traceable when the exchange spends from a one-time address which has already been

used as a source address in an MProve or MProvisions proof.

2.7.2 Effect on the Amount Confidentiality Property of Monero

From Theorems 2.3 and 2.4, it is verified that the MProve and MProvisions protocols do

not reveal the amount corresponding to any address in the anonymity set or the total

reserves amount. However, the amount confidentiality of Monero is affected by exchange-

owned addresses that become traceable when they are spent in a Monero transaction.

Suppose an exchange-owned address P becomes traceable after being spent in a transac-

tion txn. Any other Monero transaction txn′ which has included P in its ring will have its

effective ring size reduced by one. This in turn reveals information about the amounts in

the outputs created in txn′. To make the discussion concrete, suppose the transaction txn′

spends from a single input using the ring of m one-time addresses (P, P1, P2, . . . , Pm−1)

with corresponding Pedersen commitments (C,C1, C2, . . . , Cm−1). For simplicity, suppose

txn′ has a single output represented by a one-time address P ′ and Pedersen commitment

C ′. Before it was revealed that P was spent in transaction txn, the upper bound on the

amount in the commitment C ′ is given by the maximum of the amounts in the commit-

ments (C,C1, C2, . . . , Cm−1) minus the transaction fees. This is because any of the ring

47

members could have been the true source of funds in the transaction. Once P has been

revealed as spent in txn, it cannot be the source of funds in txn′. Thus the upper bound

on the amount in the commitment C ′ is given by the maximum of the amounts in the

commitments (C1, C2, . . . , Cm−1). As this list of commitments is smaller, the upper bound

can only be more restrictive.

One might argue that the amounts in the Pedersen commitments are not known.

But the amounts in coinbase commitments in Monero are revealed to ensure that miners

are creating valid blocks. While the amounts in non-coinbase commitments are not known

exactly, they can be upper bounded by identifying the coinbase commitments which could

have potentially contributed funds to them. Such an analysis has been demonstrated for

the Pedersen commitments in Grin [38].

To conclude, the MProve and MProvisions reveal information about the amounts

in transactions where exchange-owned addresses appear as mixins. Therefore both the

schemes do not preserve the amount confidentiality of Monero.

2.7.3 Effect on the Unlinkability Property of Monero

The unlinkability property of Monero implies that a PPT adversary can link a one-time

address with its corresponding public key pair only with a negligible probability (Section

2.2.1). Let {Mλ} denote a sequence of Monero-like systems indexed by the security

parameter λ. We consider one such particular system Mλ from the sequence and define

the following MoneroLink experiment to precisely characterize the unlinkability property

of Monero.

1. An experimenter chooses some scalars x0, y0, x1, y1, r $← Zq. She sets two public key

pairs (X0 = x0G, Y0 = y0G), (X1 = x1G, Y1 = y1G), and a random point R = rG.

2. The experimenter selects a bit b $← {0, 1}. Then she generates a one-time address

P = H(rXb)G+ Yb.

3. The experimenter sends (X0, Y0, X1, Y1, R, P) to a PPT adversaryA. The adversary

A outputs b̂ as a prediction of b. A wins if b̂ = b.

Owing to the unlinkability property of Monero, we have the following lemma.

48

Lemma 2.1. For every PPT adversary A in the MoneroLink experiment, there exists a

negligible function negl(λ) of the security parameter λ such that the following inequality

holds. ∣∣∣ Pr[A(X0, Y0, X1, Y1, R, P) = b]− 1

2

∣∣∣≤ negl(λ). (2.46)

Next, we propose the following MProveLink experiment to show that MProve preserves

the unlinkability property of Monero.

1. An experimenter chooses some scalars x0, y0, x1, y1, r $← Zq. She sets two public key

pairs (X0 = x0G, Y0 = y0G), (X1 = x1G, Y1 = y1G) and a random point R = rG.

2. The experimenter selects a bit b $← {0, 1}. Then she generates a one-time address

P = H(rXb)G+ Yb. The secret key is x = H(rXb) + yb.

3. The experimenter produces f(λ) MProve proofs MPeact using the singleton set {P}

as the anonymity set in all of them. The linkable ring signatures contain the key

image I = xHp(P).

4. The experimenter sends (X0, Y0, X1, Y1, R, P,MPeact) to a PPT adversary B. B

outputs b̂ as a prediction of b. B wins if b̂ = b.

Now we give the following definition.

Definition 2.3. The MProve protocol is said to preserve the unlinkability property of

Monero, if for every PPT adversary B in the MProveLink experiment, there exists a

negligible function negl1(λ) of the security parameter λ such that the following inequality

holds. ∣∣∣ Pr[B(X0, Y0, X1, Y1, R, P,MPeact) = b]− 1

2

∣∣∣≤ negl1(λ). (2.47)

We give the following theorem and its proof.

Theorem 2.5. The MProve protocol preserves the unlinkability property of Monero in

the random oracle model under the DDH assumption and given that the Lemma 3.1 holds.

Proof. We prove the theorem by contradiction. Suppose, there exists a PPT adversary B

in the MProveLink experiment for which the following inequality holds,∣∣∣ Pr[B(X0, Y0, X1, Y1, R, P,MPeact) = b]− 1

2

∣∣∣≥ 1

p(λ)
, (2.48)

49

where p(λ) is a polynomial of the security parameter λ. From Theorem 2.3, no PPT

adversary can distinguish between MPeact and MPesim with a probability non-negligibly

better than 1
2
. So for the adversary B, there exists another PPT adversary B such that

the following inequality holds,∣∣∣ Pr[B(X0, Y0, X1, Y1, R, P,MPesim) = b]− 1

2

∣∣∣≥ 1

p(λ)
, (2.49)

given that inequality (2.48) is true for B. Next, we construct a PPT adversary A for the

MoneroLink experiment usingB as a subroutine. The construction ofA(X0, Y0, X1, Y1, R, P)

is given below.

1. A generates f(λ) simulated MProve proofs MPesim using the singleton set {P} as

the anonymity set in all of them, following the same steps of the simulator SMPe

given in Section 2.6.3.

2. A sends (X0, Y0, X1, Y1, R, P,MPesim) to B and receives b̂.

3. It outputs b̂ as the estimation of b.

Now we have, ∣∣∣ Pr[A(X0, Y0, X1, Y1, R, P) = b]− 1

2

∣∣∣
=
∣∣∣ Pr[B(X0, Y0, X1, Y1, R, P,MPesim) = b]− 1

2

∣∣∣
≥ 1

p(λ)
. (2.50)

This contradicts Lemma 3.1. Hence there cannot be a PPT adversary B for which the

inequality (2.48) holds.

The statement that the MProvisions protocol preserves the unlinkability property of

Monero can be proved by a similar analysis as above.

2.8 Implementation and Performance

An MProve prover needs to compute 11n group exponentiations and O(n) point additions

and field operations. An MProve verifier needs to compute 12n group exponentiations

and O(n) point additions and field operations. The proof size is (3n+ 2) group elements

and 6n scalars.

50

Whereas, an An MProvisions prover needs to compute 15n group exponentiations

and O(n) point additions and field operations. An MProvisions verifier needs to compute

19n group exponentiations and O(n) point additions and field operations. The proof size

is 6n group elements and 9n scalars.

The generation and verification (except for the key image blockchain query) algo-

rithms for both MProve and MProvisions were implemented in C++ as tests in the Monero

codebase [39, 40]. The implementation of MProvisions is similar to Provisions [1] and is

based on non-interactive Schnorr signatures.

The simulation performance of MProve and MProvisions is given in Table 2.1 for

anonymity set Panon having sizes 1000, 10000, and 100000. The program to check whether

the key images in the proof appear on the blockchain was implemented as a Python script

which sends an RPC call to the Monero daemon (script available at [39]). The query time

column in Table 2.1 gives the execution times of this script after the LMDB database was

fully loaded into RAM (it consumes about 2 GB). The execution times were measured

on a 3.6 GHz CPU/8 GB RAM desktop PC. For each case, the percentage of known

addresses is either 10%, 50%, or 90%. Both generation/verification times and proof sizes

increase linearly with the size of Panon, with the proof generation time having a small

dependence on the size of Pown. From Table 2.1, we observe that the proof sizes for

the MProvisions protocol are about 1.5 times that of the MProve protocol. Also the

generation and verification times of MProvisions are about 2.5 times that of MProve. We,

therefore, infer that the MProve protocol is better than the MProvisions protocol in every

respect.

2.9 Conclusion

In this chapter, we describe two proof of reserves protocols for Monero. Both of them are

first to provide some privacy to a Monero exchange. They also prevent the exchanges from

colluding with each other while generating reserves proofs. By describing MProvisions,

we have explained how the proof of reserves protocol in Provisions [1] can be modified

for Monero. Then we described MProve which outperforms MProvisions. MProve’s proof

generation and verification algorithms are efficient taking only about a minute to com-

plete for an anonymity set having 100,000 addresses. However, we foresee two areas for

51

Table 2.1: MProve and MProvisions Proof Generation and Verification Performance.

|Panon| |Pown| MProve MProve MProve MProvisions MProvisions MProvisions Query

Proof Size Generat. Time Verif. Time Proof Size Generat. Time Verif. Time Time

100 100 0.32 MB 1.15 s 1.07 s 0.48 MB 2.56 s 2.85 s 0.048 s

1000 500 0.32 MB 1.14 s 1.07 s 0.48 MB 2.70 s 2.84 s 0.048 s

1000 900 0.32 MB 1.16 s 1.11 s 0.48 MB 2.82 s 2.85 s 0.048 s

10000 1000 3.2 MB 11.54 s 10.74 s 4.8 MB 25.93 s 28.78 s 0.087 s

10000 5000 3.2 MB 11.43 s 10.72 s 4.8 MB 27.36 s 28.76 s 0.087 s

10000 9000 3.2 MB 11.28 s 10.73 s 4.8 MB 28.53 s 28.71 s 0.087 s

100000 10000 32 MB 116.22 s 108.15 s 48 MB 258.78 s 287.57 s 0.545 s

100000 50000 32 MB 114.97 s 108.02 s 48 MB 271.37 s 301.55 s 0.545 s

100000 90000 32 MB 114.43 s 108.08 s 48 MB 284.60 s 286.96 s 0.545 s

improvement.

• For both the protocols, a source spending transaction becomes traceable. Preventing

this will provide better privacy to the exchange as well as the entire Monero network.

• The proof sizes scale linearly with the size of the anonymity set Panon. Reducing the

proof size is important especially if the exchanges are asked to publish the reserves

proofs frequently and store them for later audits.

We address both the aspects mentioned above in the next chapter.

52

Chapter 3

MProve+: Privacy Enhancing Proof of

Reserves Protocol for Monero

In the last chapter, we described MProvisions and MProve. We saw that when an exchange

spends from a one-time address which has already been used as a source address in an

MProve or MProvisions proof, the spending transaction becomes traceable (Section 2.5).

In particular, the source of the transaction and its linkage to the key image are revealed.

A zero-mixin transaction in Monero is a transaction which does not have any decoy

addresses in the ring. For MProve/MProvisions, a transaction spending from a source

address is effectively a zero-mixin transaction as the other decoy addresses in the ring

fail to obfuscate the source of the transaction. This can lead to traceability in other

transactions via the cascade effect [31, 32]. This is a significant privacy limitation since

it not only affects the exchange’s privacy but also affects the privacy of other Monero

users. Another issue with the MProvisions/MProve protocols is that the proof size scales

linearly with the size of the anonymity set.

To address the above concerns, we propose MProve+, a privacy enhancing proof of

reserves scheme for Monero∗. The MProve+ protocol is motivated from Bulletproofs [17]

and Omniring [41]. In particular, the MProve+ protocol is constructed by modifying a

transaction scheme for Monero given in the Omniring paper [22]. The MProve+ scheme

solves the drawback of the MProve scheme and makes the proof size logarithmic in terms

of the anonymity set size. After describing the protocol, we discuss its security properties.

To compare the performance of MProve+ to MProve, we have implemented both of them
∗MProve+ is based on joint work with Suyash Bagad.

53

in Rust.

3.1 Background

In this section, we present notation and the preliminary concepts required to describe the

MProve+ protocol.

3.1.1 Notation

We consider the same cyclic group G of prime order q with generator G used in Monero

where the decisional Diffie Hellman (DDH) problem is assumed to be hard. In this

chapter, we have followed multiplicative notation for group operation to be consistent

with the Omniring [22] paper. All group elements are denoted by upper case letters. All

scalars in Zq are denoted by lower case letters. As G is of prime order, every non-identity

element of G is a generator. Let H ∈ G be another random generator of G such that

the discrete logarithm relation between G and H is not known i.e. x is not known where

H = Gx. A Pedersen commitment [16] C to an amount a is defined as GyHa, where

y ∈ Zq is a randomly sampled blinding factor.

Let Gn and Znq be the n-ary Cartesian products of sets G and Zq respectively.

Bold fonts denote vectors. Inner product of two scalar vectors a,b ∈ Znq is defined

as 〈a,b〉 :=
∑n

i=1 ai·bi where a = (a1, . . . , an),b = (b1, . . . , bn). Hadamard and Kro-

necker products are defined respectively as, a ◦ b := (a1·b1, . . . , an·bn) ∈ Znq , a ⊗ c :=

(a1c, . . . , anc) ∈ Znmq where c ∈ Zmq . The concatenation of vectors a and b is denoted

as a‖b := (a1, . . . , an, b1, . . . , bn). For a base vector G = (G1, . . . , Gn) ∈ Gn, vector

exponentiation is defined as Ga :=
∏n

i=1G
ai
i ∈ G. For a scalar u ∈ Zq \ {0}, we de-

note its consecutive powers in the form of a vector un := (1, u, u2, . . . , un−1). We rep-

resent exponentiation of all components of a vector a by the same scalar k ∈ Zq by

a◦k := (ak1, a
k
2, . . . , a

k
n). Hadamard inverse of a vector is defined as a◦−1 := (b1, b2, . . . , bn)

where bi = a−1i if ai 6= 0 and bi = 1 otherwise. If an element a is chosen uniformly from a

set A, such a choice is denoted by a $← A. For a positive integer N , [N] denotes the set

{1, 2, . . . , N}.

54

3.1.2 Drawback of MProve

In Section 2.2 and 2.4.2, we have discussed various features of Monero and MProve re-

spectively. In this subsection, we recall the drawback of the MProve scheme discussed in

Section 2.5 to make this chapter self-contained. Suppose a Monero exchange Ex uses a

owned one-time address Pj to generate an MProve proof. Then Ex has to publish the key

image of Pj i.e. Ij in the proof as a part of the linkable ring signature σj. Suppose at a

later point of time, Ex creates a transaction txn to spend from Pj. In txn, Ex forms the

ring of the linkable ring signature containing Pj and some other cover one-time addresses

to obfuscate the source of txn. However in the linkable ring signature of txn, Ij appears

again. When txn appears in the blockchain, an adversary can match Ij as a key image of

txn and a part of the MProve proof published by Ex. Essentially she gains the following

information.

1. As Ij appearing in txn has already appeared in an Ex generated MProve proof, Ex

is spending in txn.

2. As Pj is the only common one-time address in the ring of the linkable ring signature

σj and the ring of one-time addresses used in txn, Pj is owned by Ex and it has Ij

as its key image.

3. Pj is the source of the transaction txn.

All the three statements affect the privacy of the exchange. However, the statements 2

and 3 are more crucial towards the privacy of the exchange as well as the entire Monero

network because of the following reason. Pj is revealed as exchange-owned and txn ef-

fectively becomes a zero-mixin transaction. This increases traceability of transactions in

the Monero blockchain [31, 32]. To avoid the cascade effect, Pj should be pruned from

the set of UTXOs. Even if this is done, the ring sizes reduce by 1 for all the transaction

which have used Pj as a cover address so far. The main reason for this drawback is the

association of Ij with Pj through σj. Note that a similar association also occurs in the

MProvisions protocol. The MProve+ scheme breaks this association using techniques

from Bulletproofs [17] and Omniring [22] which are discussed next.

55

3.1.3 Bulletproofs and Omniring

The current Monero implementation suffers from the fact that the linkable ring signature

size scales linearly with the size of the ring. This is crucial because these signatures are

part of the transaction stored in the blockchain. As a consequence, it is expensive to

use a large ring size (higher transaction size costs more transaction fees). Omniring [22]

proposes a technique where the proof of validity of the transaction is logarithmic in the

size of the ring. Omniring is motivated from Bulletproofs [17] and does not require any

trusted setup. Currently, for Monero transactions with multiple sources, a separate ring

is chosen for each source one-time address. Omniring proposes to use a single large ring

for all source one-time addresses of a transaction, hence the name.

Bulletproofs [17] gives a state-of-the-art range proof system with logarithmic proof

size. Here, given a Pedersen commitment† C = GvHγ, a prover can prove that v ∈

{0, 1, . . . , N − 1} for some N = 2n ∈ Zq without revealing v. Currently, Bulletproofs are

used in a Monero transaction to prove that all the output amounts in a transaction are in

the right range. In the following, we discuss some aspects of Bulletproofs and Omniring

that are relevant to us.

Range Proof Using Bulletproofs

In a range proof, a prover needs to prove that v ∈ {0, 1, . . . , N −1} for some N = 2n ∈ Zq
where the verifier only knows C which is equal to GvHγ. To do so, v is represented in

binary bits (say by binary vector aL ∈ Zn2). The complement vector of aL, i.e. vector

1n − aL, is denoted by aR. The condition v ∈ {0, 1, . . . , N − 1} is then equivalently

represented by following three constraint equations which use aL and aR.

〈aL,2n〉 = v (3.1)

〈aL, aR ◦ yn〉 = 0 (3.2)

〈aL − 1n − aR,yn〉 = 0, (3.3)

where the vector yn = (1, y, y2, . . . , yn−1) is constructed using the consecutive powers of

y $← Zq, a random challenge sent by the verifier. Here equation (3.1) ensures that aL is
†In the Monero literature, the amount is placed in the exponent of H and the blinding factor is placed

in the exponent of G. In case of Bulletproofs [17], it is the opposite. However, this is just a difference in

notation.

56

the binary representation of v, equation (3.2) ensures that the component-wise product

of aL with aR is always a zero vector, and equation (3.3) ensures that aR is obtained by

subtracting the elements of aL from 1n vector. Both equations (3.2) and (3.3) ensure that

the elements of aL are either 0 or 1. Here the idea is that if a polynomial evaluates to

zero at a random evaluation point chosen from a large set, then with high probability, the

polynomial is a zero polynomial. These constraint equations are multiplied with powers

of another random challenge z $← Zq sent by the verifier and added to form a single inner

product as follows.

〈aL − z·1n,yn ◦ (aR + z·1n) + z2·2n〉 = z2·v + δ(y, z), (3.4)

where δ(y, z) is a function of y, z and can be calculated by the verifier. Bulletproofs

proposes an optimized inner product proof with logarithmic proof size. However this inner

product proof is not zero-knowledge. As aL, aR are secret quantities, this inner product

proof cannot be applied directly to prove equation (3.4). Thus the prover chooses two

blinding vectors sL, sR $← Znq and computes the following polynomials and their inner

product.

l(X) = aL − z·1n + sL·X ∈ Znq [X]

r(X) = yn ◦ (aR + z·1n + sR·X) + z2·2n ∈ Znq [X]

t(X) = 〈l(X), r(X)〉 = t0 + t1·X + t2·X2 ∈ Zq[X],

where t0 = z2·v + δ(y, z). Then the prover and the verifier engage in an interactive

protocol. The prover sends a commitment to aL, aR as A = HαGaLHaR , a commitment

to sL, sR as S = HρGsLHsR , and commitments to t1 and t2 as T1 = Gt1Hτ1 , T2 = Gt2Hτ2

to the verifier where α, ρ, τ1, τ2 $← Zq are random scalars and G,H $← Gn are random base

vectors. The verifier sends a random evaluation point x $← Zq to the prover. Prover then

evaluates l = l(x), r = r(x), and t̂ = 〈l, r〉. Because of blinding vectors sL and sR, the

prover can use l, r in the inner product proof to prove that t̂ = 〈l, r〉, without revealing

aL and aR. Using C, A, S, T1, T2, l, r, t̂, and other quantities sent by the prover, the

verifier verifies the following conditions.

i. t̂ ?
= t0 + t1x+ t2x

2.

ii. l ?
= aL − z·1n + sL·x and r ?

= yn ◦ (aR + z·1n + sR·x) + z2·2n.

57

iii. t̂ ?
= 〈l, r〉.

As x is chosen randomly, this is equivalent to checking equation (3.4). However instead

of sending l, r (size 2n) directly, the prover uses the optimized inner product proof of

log2 n size to prove that t̂ = 〈l, r〉. Hence the range proof is a logarithmic size range proof.

Omniring and the MProve+ schemes follow a similar idea as discussed above.

Omniring

For a single source transaction in Omniring [22], we can prove the knowledge of the secret

key corresponding to one element in the ring P (represented by a vector) by proving

knowledge of a secret key (x ∈ Zq) and one secret unit vector e such that Pe = Gx. The

unit vector e has zeros in n− 1 places and 1 in the location corresponding to the source

one-time address location in the ring. Therefore e selects only the source address in the

ring vector P. For a multiple source transaction, separate unit vectors are needed. The

discrete logarithm relation can be alternatively represented as

1g = G−xPe, (3.5)

where 1g is the identity element of the groupG. The Omniring authors called this equation

the main equality. For a multiple source transaction in Omniring, the secret vector is

formed by concatenating all the secret keys, unit vectors, output amounts, and blinding

factors. The constraint equations are formed to ensure that the unit vectors contain

zeros in all places except a single 1 in the source address location, the output amounts

are in the right range, and the sum of input amounts is equal to the sum of output

amounts and transaction fees for the transaction. The equations are added with blinding

factors to form a single inner product like Bulletproofs. Then a technique similar to the

Bulletproofs-based range proof is followed except with the following difference.

Let us define the secret vector as a = (−x‖e). Then the main equality (3.5) can be

alternatively represented as

(G‖P)a = 1g. (3.6)

In the Bulletproofs-based range proof, to generate commitment A to the secret vectors

aL and aR, random base vectors G and H are chosen by the prover. As they are ran-

domly generated, discrete logarithm relation between elements of the base vectors are

58

not known. This is necessary and used in the extraction of the witnesses. In Omniring,

from equation (3.6) we observe that the base vectors to generate A must include P to

show that the main equality (3.5) holds. However, the prover might know the discrete

logarithm relation between the elements of P especially when some of them are owned

by the prover. The Omniring scheme mitigates this issue by replacing the base vector

G with Gw := ((G‖P)w ◦ Q) where w, Q are randomly chosen from Zq and Gn+1 re-

spectively. Even if a discrete logarithm relation between elements of P is known, it is

computationally infeasible to compute a discrete logarithm relation between elements of

Gw. Further, for w′ 6= w, it holds that Ga
w = Ga

w′ if the main equality (3.5) holds. Recall

that the same base G is used to generate A and S in the Bulletproofs-based range proof.

In Omniring, G0 is used to generate A and Gw is used to generate S, where w $← Zq is

sent by the verifier after receiving A. The rest of the protocol will work only if Ga
0 = Ga

w

holds. In this way the main equality (3.5) is implicitly verified. The MProve+ scheme

uses this technique.

3.2 MProve+: An Improvement over MProve

In this section, we describe MProve+ which helps to remove the drawback of MProve

using the techniques of Bulletproofs and Omniring.

3.2.1 Intuition

In both MProve and MProve+ schemes, a Monero exchange Ex reveals a list of one-

time addresses Panon = {P1, P2, . . . , Pn} as the anonymity set. Suppose in the set Panon,

Ex owns s one-time addresses which are to be used as source addresses. In both the

schemes, the key images corresponding to the source addresses are published to show

that the source addresses are not spent yet. In the MProve scheme, a key image (real or

dummy) is published for each one-time address in Panon. This is to hide the fact that a

particular address in Panon is a source address. However, this creates the association of a

key image with a unique address in the anonymity set Panon and introduces the privacy

issue discussed in Section 3.1.2. In the MProve+ scheme, we publish the key images

corresponding to only the source addresses in Panon, without revealing the association

between the key images and their actual source addresses. An observer will be only able

59

to infer that each key image can be the key image of any address in the set Panon. While

this reveals the number of source addresses s, the association of a key image with multiple

one-time addresses helps to remove the drawback of the MProve scheme (as discussed in

Section 3.3.3). Below we give an overview of the MProve+ scheme.

• In the MProve+ scheme, Ex publishes a vector of one-time addressesP = (P1, P2, . . . , Pn)

which have Pedersen commitments C = (C1, C2, . . . , Cn) associated with them. Ex

also reveals a key image vector I = (I1, I2, . . . , Is) and a Pedersen commitment Cres

to the total reserves.

• First, Ex wants to prove that it knows the s secret keys corresponding to some s of the

n addresses in P. In other words, it wants to prove that there are s distinct indices

{i1, i2, . . . , is} ⊂ {1, 2, . . . , n} such that it knows {x1, x2, . . . , xs} where Pij = Gxj for

all j = 1, 2, . . . , s. Ex does not want to reveal the indices.

• Second, Ex wants to prove that the key images I = (I1, I2, . . . , Is) correspond to the

same s indices. In other words, Ij =
(
Hp(Pij)

)xj for j = 1, 2, . . . , s.

• Third, Ex wants to prove that for the same s indices it knows‡ the blinding factor rj ∈

Zq and the amount aj ∈ {0, 1, . . . , 2β−1} corresponding to the Pedersen commitments

Ci1 , Ci2 , . . . , Cis .

• Finally, Ex wants to prove that the amount in Cres is the same as the sum of the

amounts in the Pedersen commitments at the same s indices. In other words, if

Cres = GrresHares and Cij = GrjHaj , then Ex wants to prove that ares =
∑s

j=1 aj.

To prove the above statements, Ex proceeds as follows.

• Ex proves knowledge of s secret keys, amounts, and blinding factors by proving

knowledge of s unit vectors e1, e2, . . . , es, secret vectors x = (x1, x2, . . . , xs), a =

(a1, a2, . . . , as), and r = (r1, r2, . . . , rs) such that Pej = Gxj ∧Cej = GrjHaj holds for

j = 1, 2, . . . , s. As discussed in Section 3.1.3, the jth unit vector ej is used to choose

the jth source address and its corresponding Pedersen commitment in the vectors P

and C respectively.
‡To prove ownership, proving knowledge of the secret key is enough (Section 2.2.3). However, if we

show the knowledge of the source amounts and the blinding factors, then the commitment to the total

reserves is more efficiently computed giving better performance.

60

• As proving Ij =
(
Hp(Pij)

)xj is the same as proving I
x−1
j

j = Hp(Pij), Ex proves that

the unit vectors e1, e2, . . . , es and secret keys in the vector x = (x1, x2, . . . , xs) also

satisfy Hej
p = I

x−1
j

j for all j = 1, 2, . . . , s, where Hp = (Hp(P1), Hp(P2), . . . , Hp(Pn)) is

the vector of hashed one-time addresses.

• Finally, Ex shows that ares =
∑s

j=1 aj by proving that there exists a binary§ vector

b = (b0, b1, . . . , bβ−1) such that
∑β−1

i=0 bi2
i = ares ∧

∑β−1
i=0 bi2

i =
∑s

j=1 aj holds.

All the above mentioned conditions for a proof of reserves are accumulated in a main

equality similar to Omniring [22]. All the elements in the exponents of the main equality

form the secret vector. To show that these elements of the secret vector satisfy all the

necessary conditions, some constraint equations are formed. These equations collectively

form a single inner product. We use Bulletproofs to prove that this inner product holds in

zero-knowledge as discussed in Section 3.1.3. The main equality is also implicitly verified

during this inner product verification. This is similar to the technique that Omniring uses

and is discussed in Section 3.1.3. Below, we describe the MProve+ scheme in detail.

3.2.2 Construction of MProve+

The MProve+ protocol is constructed by modifying the scheme given in Appendix F

of the Omniring [22] paper. Roughly speaking, a MProve+ proof is a giant Omniring

transaction with a single output commitment, namely, a commitment to the total reserves.

The differences between the MProve+ protocol and the protocol given in Appendix F of

the Omniring paper [22] are as follows.

1. A one-time address is denoted as P = Hx in the Omniring scheme. However it is

denoted as P = Gx in the MProve+ scheme.

2. A commitment is denoted as C = GaHr in the Omniring scheme where a, r denote

the amount and the blinding factor respectively. However a commitment in the

MProve+ scheme is denoted by C = GrHa.
§This binary representation basically gives a range proof on ares and is motivated from Omniring. In

our case, ranges of a1, a2, . . . , as are already verified in the blockchain. Therefore proving that ares is the

sum of them implicitly verifies its range. However it is observed that, using the binary representation b

instead of ares in the secret vector gives better performance.

61

3. The number of outputs |τ | in the Omniring scheme is 1 in the MProve+ scheme.

Hence the binary vector vec(B) of length β|τ | in cL is replaced by a binary vector

b of length β in the MProve+ scheme.

Below we give the language for the MProve+ protocol satisfying the requirements men-

tioned in Section 3.2.1.

Lcrs
MP+ =

 P, C, Hp,

{Ij}sj=1, Cres

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃(x, e1, . . . , es,b, a, r, ares, rres)

such that each ej is a unit vector,

Pej = Gxj , xj ∈ x,

Cej = GrjHaj , rj ∈ r, aj ∈ a,

Hej
p = I

x−1
j

j ∀j ∈ [s],

b is the binary representation of ares of length β,

Cres = GaresHrres ,∑
aj∈a

aj = ares.

(3.7)

Here the common reference string crs specifies the necessary details like description of the

group, its generators, the hash functionHp(·) to be used. We define (P,C,Hp, {Ij}sj=1, Cres)

as the statement stmt of the language. We also define (x, e1, . . . , es,b, a, r, ares, rres) as

the witness wit of the language.

3.2.3 Forming the Main Equality

We define E as the s× n matrix containing e1, . . . , es as the rows. We give the following

definitions similar to the definitions in Appendix F of the Omniring paper [22]. Here u,

v are public coin challenges sent by the verifier.

Ŷ := P ◦C◦u ◦H◦u2p , (3.8)

Î := I◦−u
2vs , (3.9)

ê := vsE, (3.10)

ξ := −〈vs, u · a〉, (3.11)

η := −〈vs,x+ u · r〉. (3.12)

The main equality is formed to verify the following representations from the language

given in (3.7).

62

G−xjPej = 1g,∀j ∈ [s], (3.13)

G−rjH−ajCej = 1g,∀j ∈ [s], (3.14)

I
−x−1

j

j Hej
p = 1g,∀j ∈ [s], (3.15)

where 1g is the identity element of G. Equations (3.13), (3.14), and (3.15) represent

s equations each. We exponentiate the jth equation (j ∈ [s]) of (3.13), (3.14), and

(3.15) with vj−1, uvj−1, and u2vj−1 respectively. Multiplying all these modified equations

together gives us the following equation.

HξGηŶ
ê
Î
x◦−1

= 1g. (3.16)

Equation (3.16) is called the main equality for MProve+.

cL := (ξ ‖ η ‖ ê ‖ x◦−1 ‖ vec(E) ‖ b ‖ a ‖ r)

cR := (02+n ‖ x ‖ 1sn − vec(E) ‖ 1β − b ‖ 02s)

Figure 3.1: Honest encoding of witness in MProve+.

v0

v1

v2

v3

v4

v5

v6

v7

v8

u5

:=

· · · · ysn+β · ·

· · · ys · · · ·

· · · · · 2β · ·

· · · · ys ⊗ 1n · · ·

1 · · · · · uvs ·

· 1 · · · · · uvs

· · −yn · vs ⊗ yn · · ·

· · · · · 2β −1s ·

· · · · ysn+β · ·

· · · vs · · · ·

Figure 3.2: Definitions of constraint vectors (dots mean zero vectors) for MProve+.

3.2.4 Defining Secret Vectors and the Constraint Equations

Now we construct the secret vectors given in Figure 3.1. Here, we essentially need to

consider all the exponents in the main equality (3.16). Additionally we need to consider

63

vec(E) which is a vector of length sn, formed by concatenating all the rows of matrix E.

Vector vec(E) is used to ensure that all the rows of E are indeed unit vectors i.e. they

contain a single 1 and rest of the elements are 0. The vector cL has 2 scalars (ξ, η),

3 vectors (x◦−1, a, r) of length s, and 3 vectors (ê, vec(E),b) of length n, sn, and β

respectively. Hence the length of cL is m = sn+n+3s+2+ β. Vector cR is an auxiliary

vector of the same length m used to prove the constraints on the witnesses.

Figure 3.2 gives some constraint vectors which are used to select various parts of

the secret vector and give a constraint in terms of an inner product. All these inner

product constraint equations are given in Figure 3.4. Here equations (3.17) and (3.25)

verify that all elements of vec(E) and b are either 0 or 1. Equation (3.18) verifies that the

(n+ 2+ 1)th to (n+ 2+ s)th elements of cL and cR are inverses of each other. Equation

(3.19) verifies that b is the binary representation of ares. Equation (3.20) verifies that

each block of n elements of the vector vec(E) contains a single 1 and the rest of the

elements are 0 i.e. each such block is a unit vector. Equations (3.21) and (3.22) verify the

definitions of ξ and η given in equations (3.11) and (3.12) respectively. Equation (3.23)

verifies the definition of ê given in equation (3.10). Lastly, equation (3.24) verifies the

equality
∑β−1

i=0 bi2
i =

∑s
j=1 aj. Notice that ares is not a member of the secret vector and

the verification Cres
?
= GrresHares is not done in the set of constraint equations. As we

shall see, this verification is done in the final verification equation (V3) similar to the

Omniring scheme.

64

θ = v0 + zv1, µ :=
8∑
i=2

zivi,

ν = z8v8, ω = z5u5,

κ = z〈1s,ys〉+ z3〈1s,ys〉 + 〈1m,ν〉

δ = z〈1s,ys〉+ z3〈1s,ys〉 + 〈1m,ν〉+ 〈α,µ〉

α = θ◦−1 ◦ (ω + ν), β = θ◦−1 ◦ µ,

Figure 3.3: Definitions of constraint

vectors (continued) for MProve+.

EQ(γL,γR) = 0 ⇐⇒

〈γL,γR ◦ v0〉 = 0 (3.17)

〈γL,γR ◦ v1〉 = 〈1s,ys〉 (3.18)

〈γL,v2〉 = ares (3.19)

〈γL,v3〉 = 〈1s,ys〉 (3.20)

〈γL,v4〉 = 0 (3.21)

〈γL,v5〉+ 〈γR,u5〉 = 0 (3.22)

〈γL,v6〉 = 0 (3.23)

〈γL,v7〉 = 0 (3.24)

〈γL + γR − 1m,v8〉 = 0 (3.25)

Figure 3.4: A system of constraint

equations guaranteeing integrity of

encoding of witness for MProve+.

3.2.5 Combining All Constraint Equations in a Single Inner Prod-

uct

For a random scalar z ∈ Zq sent by the verifier, multiplying equations (3.17) to (3.25) by

consecutive powers of z namely 1, z, z2, . . . , z8 and adding them gives,

〈γL,γR ◦ θ + µ〉+ 〈ω + ν,γR〉 = κ+ z2ares, (3.26)

where θ,ν, and κ are defined in Figure 3.3. To get a single inner product, we modify

(3.26) as follows,

〈γL,γR ◦ θ + µ〉+ 〈(ω + ν) ◦ θ◦−1,γR ◦ θ + µ〉 (3.27)

= κ+ 〈(ω + ν) ◦ θ◦−1,µ〉+ z2ares

=⇒ 〈γL +α,γR ◦ θ + µ〉 = δ + z2ares, (3.28)

where α and δ are defined in Figure 3.3.

65

In the following protocol, we prove the inner product given in equation (3.28) using

the Bulletproofs technique as discussed in Section 3.1.3. The main equality (3.16) is

implicitly proved using the technique followed in Omniring as discussed in Section 3.1.3.

MProve+ Protocol (ΠMPP): Argument of knowledge for Lcrs
MP+.

Setup(λ):

crs = (G, q, G,H,Hp(·)).

Generate: rres $← Zq, ares =
∑

aj∈a aj, Cres = GrresHares ,

b = (b0, b1, . . . , bβ−1), such that
∑β−1

k=0 bk2
k = ares,P = {Pj}nj=1,C = {Cj}nj=1,

Hp = {HP (Pj)}nj=1, I = {Ij}sj=1 = {Hp(Pj)
xj}sj=1

Output: stmt = (P,C,Hp, I, Cres), wit = (x, e1, . . . , es,b, a, r, ares, rres)

〈P(crs, stmt, wit),V(crs, stmt)〉 :

V: u, v $← Z, F $← G,Q $← G2+n+s,G′ $← Gm−n−s−2,H $← Gm

V −→ P: u, v, F,Q,G′,H

P, V:

1. Compute Ŷ = P ◦C◦u ◦H◦u2p and Î = I◦−u
2vs

2. For w ∈ Zq, denote

Gw :=
[(
(H‖G‖Ŷ‖Î)◦w ◦Q

)
‖G′

]
(3.29)

P:

1. rA $← Zq

2. A := F rAGcL
0 HcR

Note: GcL
w = GcL

w′ ∀w,w′ ∈ Zq since HξGηŶ
ê
Î
x◦−1

= 1g by the main equality

3.16. Thus A = F rAGcL
w HcR ∀w ∈ Zq

P −→ V: A

V: w $← Zq

V −→ P: w

66

P:
1. rS $← Zq, sL $← Zmq , for sR ∈ Zmq s.t. for j ∈ [m]

sR[j] =

sj
$← Zq, for cR[j] 6= 0

0, for cR[j] = 0

2. S = F rSGsL
w HsR

P −→ V: S

V: y, z $← Zq

V −→ P: y, z

P:
1. Define the following polynomials (in X):

l(X) := cL +α+ sL ·X ∈ Zmq [X]

r(X) := θ ◦ (cR + sR ·X) + µ ∈ Zmq [X]

t(X) := 〈l(X), r(X)〉 = t2X
2 + t1X + t0 ∈ ZNq [X]

for some t2, t1, t0 ∈ Zq. In particular, t0 = z2ares + δ

2. τ1, τ2 $← Zq

3. T1 = H t1Gτ1 , T2 = H t2Gτ2

P −→ V: T1, T2

V: x $← Zq

V −→ P: x

P:
1. l := l(x) = cL +α+ sL · x ∈ Zmq

2. r := r(x) = θ ◦ (cR + sR · x) + µ ∈ Zmq

3. t̂ := 〈l, r〉 ∈ Zq

4. τ := z2rres + τ2x
2 + τ1x

5. r := rA + rSx

67

P −→ V: l, r, t̂, τ, r

V: Checks if the following relations hold:

(V1) t̂ ?
= 〈l, r〉

(V2) F rGl
wH

θ◦−1◦r ?
= ASxGα

wH
β

(V3) H t̂Gτ ?
= HδCz2

resT
x
1 T

x2

2

Verification equations (V1) and (V2) need l, r ∈ Zmq which requires O(m) size commu-

nication from the prover. Instead, we can use the inner product protocol which is used

in Bulletproofs [17] and Omniring [22]. The inner product argument is expressed by the

following language.

LIP =

P ∈ G, c ∈ Zq

∣∣∣∣∣ ∃(a,b) such that

P = U cGaHb ∧ c = 〈a,b〉.

 (3.30)

where a,b ∈ Z|a|q , G,H $← G|a|, U $← G. In our case, the verifier sets c = t̂. Apart from

the prover, the verifier can also compute the Pedersen commitment P to l and r without

knowing l and r as

P = U t̂Gl
w(H

′)r = U t̂(F)−rASxGα
wH

β, (3.31)

by verification equation (V2), where H′ = Hθ◦−1

. With this, the prover and the verifier

engage in the inner product argument to prove verification equations (V1) and (V2). So

the prover does not send l and r in the previous step reducing the communication cost

to O(log2(m)). The inner product argument is public coin, so can be done by only one

interaction between the prover and the verifier using the Fiat-Shamir heuristic. We have

the following theorems which come directly from Theorem F.2 and F.3 of the Omniring

paper [22], hence their proofs are omitted.

Theorem 3.1. The argument presented in ΠMPP is public-coin, constant-round, perfectly

complete and perfect special honest-verifier zero-knowledge.

Theorem 3.2. Assuming the discrete logarithm assumption holds over G, ΠMPP has com-

putational witness-extended-emulation for extracting a valid witness wit.

68

3.2.6 Proof Generation and Verification

The exchange follows the ΠMPP protocol and publishes (P, I, Cres) and a ΠMPP proof. The

verifier of ΠMPP protocol does the following verification steps.

1. Computes Hp using the hash function Hp(·). Reads C by looking at the Monero

blockchain and using P.

2. Checks that no element in I appears in the set of key images I. If this is not the

case then double spending is detected.

3. Checks that all the elements in I are distinct. This is to ensure that no source

amount is used more than once in calculating the total reserves.

4. Checks the proof of ΠMPP as discussed above.

5. Checks that no element in I appears in the MProve+ proofs generated by another

Monero exchange. If this is not the case then address sharing collusion is detected.

The verifier rejects the proof if any of the above steps fails. Otherwise she accepts the

proof. For faster verification, we have done some optimization as discussed below.

Faster Verification

The cost of verifying an MProve+ proof is largely determined by the verification of the

argument of knowledge ΠMPP. A verifier checks the validity of ΠMPP by checking the

verification equation (V3) and the inner product argument. As noted in [17], an inner

product argument ΠIP =
(
{Lj, Rj}log2mj=1 ∈ G, a, b ∈ Zq

)
for the language in (3.30) can be

verified in a single multi-exponentiation check as

Ga·s ·Ha·s◦−1 · Ua·b = P ·
log2m∏
j=1

L
x2j
j ·R

x−2
j

j . (3.32)

where s = {si}Ni=1, si =
∏log2m

j=1 x
b(i,j)
j such that b(i, j) is 1 if the j-th bit of (i − 1) is 1,

and −1 otherwise. Note that s depends only on the challenges {xj}log2mj=1 . For the inner

product argument associated with ΠMPP, substituting the expression of P from (3.31), we

get

Ga·s
w ·Hb·(θ◦s)◦−1 · Ua·b =

(
U t̂(F)−rASxGα

wH
β
)
·
log2m∏
j=1

L
x2j
j ·R

x−2
j

j . (3.33)

69

Moving everything to the LHS, we get

Ga·s−α
w ·Hb·(θ◦s)◦−1−β · Ua·b−t̂ · (F)r · A−1 · S−x ·

log2m∏
j=1

L
−x2j
j ·R−x

−2
j

j = 1g. (3.34)

Furthermore, we merge the verification equation (V3) in (3.35) using a random scalar

c← Zq.

Ga·s−α
w ·Hb·(θ◦s)◦−1−β·Ua·b−t̂·(F)r·A−1·S−x·

log2m∏
j=1

L
−x2j
j ·R

−x−2
j

j ·
(
H t̂−δGτC−z

2

res T
−x
1 T−x

2

2

)c
= 1g.

(3.35)

Effectively, the verification of an MProve+ boils down to a single multi-exponentiation

check of size O(2m+ 2log2m+ 9).

3.3 Security Properties

In this section, we describe the same security properties of the MProve+ protocol which

were discussed for the MProve and MProvisions protocols in the previous chapter. As

discussed before, the collusion resistance property prevents two or more exchanges from

sharing a common one-time address as a source of funds while generating a MProve+

reserves proof. The inflation resistance property prevents an exchange from publishing a

commitment Cres to an amount which exceeds the actual reserves amount. The pre-spend

privacy property provides privacy to the exchange given that it has not spent from a

source one-time address used in the reserves proofs. Additionally, MProve+ alleviates the

drawback seen in MProve/MProvisions if the exchange carefully chooses the transaction

rings while spending from source addresses.

3.3.1 Inflation Resistance

We say that the MProve+ scheme is inflation resistant if no probabilistic polynomial time

(PPT) exchange can generate an accepting MProve+ transcript committing to an amount

a′res 6=
∑s

j=1 aj as the reserves amount. This is similar to proving that in an Omniring

transaction, the sum of inputs is equal to the sum of outputs. Hence the inflation resistance

property for MProve+ follows directly from the balance property given in Theorem 4.2

of the Omniring [22] paper.

70

3.3.2 Collusion Resistance

In the MProve+ protocol, for each owned address P , the exchange has to publish a key

image I such that the following relation holds,

P = Gx ∧ I = (Hp(P))
x, (3.36)

where x is the secret key corresponding to P . Note that for a given P , the key image I in

equation (3.36) is unique. Hence if two PPT exchanges use a common one-time address as

a source address to generate reserves proofs, the key image corresponding to that one-time

address will appear in both the reserves proofs. Thus a verifier can easily detect collusion

between exchanges. If we assume the exchanges are PPT, then they can generate different

key images for the same source address only with a negligible probability. This follows

from the unforgeability of the argument of knowledge of the MProve+ protocol.

3.3.3 Privacy

A fundamental requirement for a Monero proof of reserves protocol is to show that the

source addresses that are used in the proof are not spent already. The simplest way to

show this is to reveal the key images corresponding to the source addresses. Any verifier

can then check that the source addresses are unspent by checking if the key images have

appeared in the set of key images I on the Monero blockchain.

One might wonder if it is possible to construct a reserves proof for Monero which does

not explicitly reveal the key images of source addresses. A scheme called UnspentProof

for proving that a one-time address is not spent without revealing the corresponding key

image was proposed by Koe et al. [25, Section 8.1.5]. In Appendix B.1, we discuss the

difficulties in using UnspentProof in a privacy focused proof of reserves protocol. We

also discuss the other challenges in hiding the key images corresponding to the source

addresses in the same appendix.

From the construction, we see that the MProve+ protocol publishes the key images

of the source addresses explicitly. Hence when an exchange-owned address is spent in a

later transaction, the fact that the exchange is spending in the transaction is revealed.

In this aspect, MProve+ has the same drawback as MProve and MProvisions. However,

the identity of the particular source address being spent in the transaction will not be

revealed if the exchange chooses the ring in the transaction carefully.

71

In the following subsection, we characterize the information revealed by the publi-

cation of multiple MProve+ proofs by a set of bipartite graphs with edges between the

anonymity sets and the key image sets. These graphs illustrate how MProve+ affects the

privacy of the exchange as well as the privacy of the entire Monero network.

Privacy Implications of Publishing a Polynomial Number of MProve+ Proofs

Let f(λ) denote a polynomial of the security parameter λ. Suppose a Monero exchange

has generated f(λ) MProve+ proofs with the anonymity sets and the key image sets

{P(i)}f(λ)i=1 and {I(i)}f(λ)i=1 respectively. Let the corresponding cardinalities of those sets be

{ni}f(λ)i=1 and {si}f(λ)i=1 respectively.

Now let us consider the information revealed to a PPT adversary who observes{
P(i), I(i)

}f(λ)
i=1

together. First, consider only the ith MProve+ proof. When (P(i), I(i)) is

revealed together, then it is revealed is that any key image in I(i) could have originated¶

from any one-time address in P(i). This information can be represented by a complete

bipartite graph‖ with the disjoint sets of vertices (P(i), I(i)) and the edge set P(i) × I(i).

Here an edge between a one-time address P ∈ P(i) and a key image I ∈ I(i) denotes that

I could have originated from P .

Now consider the case when f(λ) MProve+ proofs are published and
{
P(i), I(i)

}f(λ)
i=1

are revealed. The information in the individual bipartite graphs can be combined to

identify the set of one-time addresses which could have originated a particular key image.

For a key image I ∈ {I(i)}f(λ)i=1 , let Porig(I) denote the set of one-time addresses of minimal

cardinality which could have originated I, from the perspective of a PPT adversary which

has access to the Monero blockchain and the MProve+ proofs. We call Porig(I) the

originating set for I. Suppose I has appeared in j1th, j2th,. . ., jrth proofs among the

overall f(λ) MProve+ proofs. Then it is obvious that,

Porig(I) ⊂
r⋂

k=1

P(jk). (3.37)

Consider the following example.

Example 3.1. Suppose the adversary observes three MProve+ proofs. The anonymity
¶The statement that the key image I has originated from the one-time address P implies that there

exists a scalar x ∈ Zq such that P = Gx ∧ I = (Hp(P))
x holds.

‖This formulation was introduced in [30].

72

Figure 3.5: Illustration of Example 3.1.

sets and the key image sets are as follows.

P(1) = {P1, P2}, I(1) = {I1},

P(2) = {P1, P2}, I(2) = {I2},

P(3) = {P1, P2, P3}, I(3) = {I3}.

As there are 3 MProve+ proofs, there are 3 corresponding complete bipartite graphs

as shown in stage 1 of Figure 3.5. If we use the intersection formula for Porig(·) as given

in equation (3.37), then we get

Porig(I3) ⊂ P(3) = {P1, P2, P3}.

But one can see that P3 is the only possible one-time address which could have possibly

originated I3. This is because {P1, P2} together have to originate {I1, I2}∗∗. This makes

P3 as the only member of P(3) which could possibly originate I3. To get a precise definition

of the originating set, we construct the simple†† bipartite graph (U, V,E), using the f(λ)

anonymity sets and key image sets. Here U, V are the disjoint vertex sets given by

U =

f(λ)⋃
i=1

P(i), V =

f(λ)⋃
i=1

I(i),

and E is the edge set given by

E =

f(λ)⋃
i=1

(
P(i) × I(i)

)
.

∗∗The set {P1, P2} is termed as closed set in [33]. This kind of structure makes some cover addresses

useless in the anonymity sets/rings of transactions.
††By a simple graph, we mean undirected graph with no loops or multiple edges.

73

Since we are requiring the graph to be simple, the edge set E will not have multiple edges.

If an edge appears in both P(i) × I(i) and P(j) × I(j) for i 6= j, then we include it only

once. The bipartite graph (U, V,E) corresponding to Example 3.1 is shown in stage 2 of

Figure 3.5. Here the orange edges, blue edges, and green edges of E come from the first,

second, and the third proof respectively.

A matching on a graph is a subset of the edge set such that the subset elements have

no common vertices [42]. We give the following definition for Porig(I).

Definition 3.1. Let M be the set of all maximum cardinality matchings on the bipartite

graph (U, V,E) induced by the f(λ) MProve+ proofs such that for each M ∈ M the

set of edges M
⋂(

P(i) × I(i)
)
is a maximum cardinality matching in the bipartite graph(

P(i), I(i),P(i) × I(i)
)
for all i = 1, 2, . . . , f(λ).

We define Porig(I) for a key image I in
⋃f(λ)
i=1 I

(i) as

Porig(I) =

P ∈
f(λ)⋃
i=1

P(i)

∣∣∣∣(P, I) belongs to a matching in M

 .

The above definition gives Porig(I1) = Porig(I2) = {P1, P2} and Porig(I3) = {P3} as

desired. Now we give the following theorem which precisely characterizes the information

revealed by the MProve+ protocol. The proof is given in Appendix B.2.

Theorem 3.3. The only information that a PPT adversary can obtain from the f(λ)

MProve+ proofs is the f(λ) bipartite graphs
(
P(i), I(i),P(i) × I(i)

)f(λ)
i=1

.

Even if we were to disregard the edges in the graph, the key image sets {I(i)}f(λ)i=1 can

affect the privacy of the exchange. For example, when a PPT adversary observes only

{I(i)}f(λ)i=1 , the following information is revealed to her.

1. The number of source addresses used in the proofs (cardinalities of I(i)s, i.e. sis).

2. The number of new source addresses used in the (i+ k)th proof (k ≥ 1) which were

not there in the ith proof (the number of new key images in I(i+k) which were not

there in I(i)).

3. The number of source addresses in the ith proof which were removed from the

(i+ k)th proof (the number of key image in I(i) which are not there in I(i+k)).

74

Figure 3.6: Linking key image for MProve+ when a source address is spent.

4. The number of source addresses which are being used repeatedly. For example,

consider a key image I which has appeared in I(i), removed in I(i+1) onwards, and

appears again in I(i+k). Then the appearance of I reveals that a source address was

used in the ith proof, not in use from the (i+1)th proof to the (i+ k)th proof, and

was used again in the (i+ k)th proof.

Choice of the anonymity sets. In our analysis, we have shown that multiple

MProve+ proofs can reveal the originating set Porig(I) for a particular published key

image I. While choosing the anonymity sets across multiple proofs, the exchange needs

to have a proper strategy. The goal of such a strategy should be to make the cardinalities

of the originating sets as large as possible. Proposing such a strategy is an interesting

direction for future research.

Next, we discuss what happens when an exchange spends from a source address

which was used in the MProve+ protocol. In particular, we describe the consequence of

using MProve+ as the proof of reserves protocol in Example 2.1.

Effect of MProve+ on Monero transactions

Suppose Ex has used P as a source address in some of the f(λ) published MProve+ proofs

and I has appeared in some sets in {I(i)}f(λ)i=1 . As discussed above, each MProve+ proof

induces a complete bipartite graph. This is shown in stage 1 of Figure 3.6. From these

f(λ) MProve+ proofs, the originating set for I i.e. Porig(I) is revealed. Let A be a PPT

adversary which wants to obtain the originating address of I (here P) from Porig(I). If A

75

is a participant in the Monero network, then it might have the side information that some

addresses in
⋃f(λ)
i=1 P(i) do not belong to Ex and are definitely cover addresses. We model

this side information by the set Pother ⊂
⋃f(λ)
i=1 P(i). A is given access to the set Pother.

Now consider the scenario just before a source address spending transaction txn appears

on the Monero blockchain. A knows that any address in Pother cannot be the originating

address for I. If we ignore negligible probabilities, the probability that A successfully

outputs P as the originating address for I is given by,

Pr[A(I,Porig(I),Pother) = P] =
1

|Porig(I) \Pother|
. (3.38)

Next, txn appears in the Monero blockchain with key image I and ring R(txn). The view

of A in this situation is shown in stage 2 of Figure 3.6. With this additional information,

A knows that any address in the set (Porig(I) \Pother)
⋂
R(txn) could be the originating

address corresponding to I. The intersection of the corresponding graphs is shown in

stage 3 of Figure 3.6. The equation (3.38) is modified as follows to give the probability

that A successfully links P with I.

Pr[A(I,Porig(I),Pother,R(txn)) = P] =
1

|(Porig(I) \Pother)
⋂
R(txn)|

. (3.39)

It is desirable for Ex that the probability given in equation (3.39) is as low as possible.

Assuming that Ex does not have the knowledge of Pother, a strategy for Ex to reduce the

probability in equation (3.39) is as follows.

For a given source address P with the associated key image I, Ex should choose

anonymity sets in such a way that Porig(I) becomes as large as possible. Later when Ex

spends from P in txn, Ex should choose R(txn) as a proper subset of Porig(I).

Now observe equation (2.35) and (3.39). For MProve, no matter how the anonymity

set and the ring of the transaction are chosen, the linking probability is always 1. However

for MProve+, the exchange can choose the anonymity sets and the transaction ring care-

fully and keep the linking probability away from 1. Hence we conclude that MProve+ is

better than MProve when the privacy of the entire Monero network including the exchange

is of concern.

76

3.4 Effect of MProve+ on Monero Privacy

As discussed in Section 2.2, the major privacy properties for the Monero scheme are un-

traceability, amount confidentiality, and unlinkability. We have discussed how the MProve

and MProvisions protocols affect these privacy features in Section 2.7. In this section, we

give a similar analysis for the MProve+ protocol.

3.4.1 Effect on the Untraceability Property of Monero

As discussed in Section 2.2.2, a Monero transaction is called untraceable when a PPT

adversary cannot determine which one-time address in the ring is actually being spent

i.e. originates the associated key image. Consider a key image I which has appeared

across multiple MProve+ proofs. As discussed in Section 3.3.3, when I appears in the

source spending transaction txn, it is linked with the source one-time address P if the set

(Porig(I) \Pother)
⋂
R(txn) becomes a singleton set containing only P . The exchange can

plausibly avoid this by choosing the ring R(txn) properly. Hence we conclude that the

MProve+ protocol does not preserve the untraceability property of Monero in general.

But unlike MProve/MProvisions, it does not always reveal the true source address in a

source spending transaction.

3.4.2 Effect on the Amount Confidentiality Property of Monero

From Theorem 3.3, it is verified that the MProve+ protocol does not reveal the amounts

corresponding to the addresses in the anonymity sets or the total reserves amount. How-

ever, the amount confidentiality is affected when a source spending transaction txn appears

in the blockchain. As mentioned in the above section, in the extreme scenario when the

set (Porig(I) \Pother)
⋂
R(txn) becomes a singleton set, then the transaction txn becomes

traceable. Then the amount confidentiality of the other transactions containing P (the

source of txn) in their rings are affected in the same way as described in Section 2.7.2.

Even if the set (Porig(I) \Pother)
⋂
R(txn) is not a singleton set, its size might be

less than that of the ring R(txn). Then it is known that any of the one-time addresses in

the set R(txn) \ ((Porig(I) \Pother)
⋂
R(txn)) cannot be the source of the transaction txn.

Then the amount confidentiality of the transaction txn is affected in the way as described

in Section 2.7.2. Hence we conclude that the MProve+ protocol does not preserve the

77

amount confidentiality property of Monero in general.

3.4.3 Effect on the Unlinkability Property of Monero

The unlinkability property of Monero implies that a PPT adversary can link a one-time

address with its corresponding public key pair only with a negligible probability (Sec-

tion 2.2.1). To show that the MProve+ protocol preserves the unlinkability property of

Monero, we give the following analysis which is similar to that given in Section 2.7.3.

Let {Mλ} denote a sequence of Monero-like systems indexed by the security pa-

rameter λ. We consider one such particular system Mλ from the sequence and define the

following MoneroLink experiment (in the multiplicative notation) to precisely characterize

the unlinkability property of Monero.

1. An experimenter chooses some scalars x0, y0, x1, y1, r $← Zq. She sets two public key

pairs (X0 = Gx0 , Y0 = Gy0), (X1 = Gx1 , Y1 = Gy1), and a random point R = Gr.

2. The experimenter selects a bit b $← {0, 1}. Then she generates a one-time address

P = GH(Xr
b)·Yb.

3. The experimenter sends (X0, Y0, X1, Y1, R, P) to a PPT adversaryA. The adversary

A outputs b̂ as a prediction of b. A wins if b̂ = b.

Owing to the unlinkability property of Monero, we have the following lemma.

Lemma 3.1. For every PPT adversary A in the MoneroLink experiment, there exists a

negligible function negl(λ) of the security parameter λ such that the following inequality

holds. ∣∣∣ Pr[A(X0, Y0, X1, Y1, R, P) = b]− 1

2

∣∣∣≤ negl(λ). (3.40)

Next, we propose the following MPPLink experiment for the MProve+ protocol.

1. An experimenter chooses some scalars x0, y0, x1, y1, r $← Zq. She sets two public key

pairs (X0 = Gx0 , Y0 = Gy0), (X1 = Gx1 , Y1 = Gy1) and a random point R = Gr.

2. The experimenter selects a bit b $← {0, 1}. Then she generates a one-time address

P = GHs(Xr
b)·Yb. The secret key is x = Hs(X

r
b) + yb.

78

3. The experimenter produces f(λ)MProve+ proofsMPPact using the singleton set {P}

as the anonymity set in all of them. The proofs contain the key image I = Hp(P)
x.

4. The experimenter sends (X0, Y0, X1, Y1, R, P,MPPact) to a PPT adversary B. B

outputs b̂ as a prediction of b. B wins if b̂ = b.

Now we give the following definition.

Definition 3.2. The MProve+ protocol is said to preserve the unlinkability property of

Monero, if for every PPT adversary B in the MPPLink experiment, there exists a negligible

function negl1(λ) of the security parameter λ such that the following inequality holds.∣∣∣ Pr[B(X0, Y0, X1, Y1, R, P,MPPact) = b]− 1

2

∣∣∣≤ negl1(λ). (3.41)

We give the following theorem and its proof.

Theorem 3.4. The MProve+ protocol preserves the unlinkability property of Monero in

the random oracle model under the DDH assumption and given that the Lemma 3.1 holds.

Proof. We prove the theorem by contradiction. Suppose, there exists a PPT adversary B

in the MPPLink experiment for which the following inequality holds,∣∣∣ Pr[B(X0, Y0, X1, Y1, R, P,MPPact) = b]− 1

2

∣∣∣≥ 1

p(λ)
, (3.42)

where p(λ) is a polynomial of the security parameter λ. Let MPPsim denote f(λ) simulated

proofs which is generated by the method given in Appendix B.2 and using the singleton

set {P} as the f(λ) anonymity sets. From Claim 4 in Appendix B.2, no PPT adversary

can distinguish between MPPact and MPPsim with a probability non-negligibly better than
1
2
. So for the adversary B, there exists another PPT adversary B such that the following

inequality holds, ∣∣∣ Pr[B(X0, Y0, X1, Y1, R, P,MPPsim) = b]− 1

2

∣∣∣≥ 1

p(λ)
, (3.43)

given that inequality (3.42) is true for B. Next, we construct a PPT adversary A for the

MoneroLink experiment usingB as a subroutine. The construction ofA(X0, Y0, X1, Y1, R, P)

is given below.

1. A generates f(λ) simulated MProve+ proofs MPPsim using the singleton set {P}

as the anonymity set in all of them, following the same steps of the simulator SMPP

given in Appendix B.2.

79

2. A sends (X0, Y0, X1, Y1, R, P,MPPsim) to B and receives b̂.

3. It outputs b̂ as the estimation of b.

Now we have, ∣∣∣ Pr[A(X0, Y0, X1, Y1, R, P) = b]− 1

2

∣∣∣
=
∣∣∣ Pr[B(X0, Y0, X1, Y1, R, P,MPPsim) = b]− 1

2

∣∣∣
≥ 1

p(λ)
. (3.44)

This contradicts Lemma 3.1. Hence there cannot be a PPT adversary B for which the

inequality (3.42) holds.

3.5 Performance

We compare our proof of reserves protocol MProve+ with MProve because the latter

performs better than MProvisions. In both MProve and MProve+, the anonymity set P

is to be revealed as a part of the proof. Suppose the anonymity set size is n and the number

of owned addresses is s. An MProve+ prover needs to compute 12m+2n+2s+2 log2(m)−2

group exponentiations and O(m) point additions and field operations. An MProve+

verifier needs to compute 2m+2n+s+2 log2(m)+9 group exponentiations andO(m) point

additions and field operations. Whereas an MProve prover needs to compute 11n group

exponentiations and O(n) point additions and field operations. An MProve verifier needs

to compute 12n group exponentiations and O(n) point additions and field operations.

The proof sizes of MProve+ and MProve are respectively (n+s+2dlog2me+4) group

elements, 5 scalars and 3n + 2 group elements, 6n scalars. Here m denotes the length of

the witness vectors defined in Figure 3.1. Figure 3.7(a) shows the growth of proof sizes

with anonymity set size for s = 100. Although the proof sizes of both MProve+ and

MProve grow linearly, proof size of MProve+ is typically an order of magnitude smaller.

For anonymity set size n = 105 and the number of owned addresses s = 103, an MProve+

proof size is 3MB as against 29MB for MProve. The difference in proof sizes increases as

n grows. If exchanges are required to publish frequent proofs of reserves and store them

for later audits, protocols with smaller proof sizes will be preferred.

80

27 29 211 213 215 217
100

101

102

103

104

105

Anonymity set size (n)

(a) Proof size in KB for s = 100

MProve+
MProve

27 29 211 213 215 217
2−11

2−8

2−5

2−2

21

24

27

Anonymity set size (n)

(b) Running times in min, s = 100

MProve+ Gen
MProve+ Ver
MProve Gen
MProve Ver

26 28 210 212
2−6

2−3

20

23

26

29

Number of exchange-owned addresses (s)

(c) Running times in min, n = 5000

MProve+ Gen
MProve+ Ver
MProve Gen
MProve Ver

Figure 3.7: Performance comparison of MProve+ and MProve for G = Ristretto elliptic

curve.

We have implemented MProve+ in Rust over the Ristretto elliptic curve. We demon-

strate how Ristretto encoding of existing addresses in Monero could be computed, ensuring

adaptability to the existing Monero framework [43]. For fair comparison, we have also

implemented MProve over Ristretto. All experiments were run on a 2.6 GHz Intel Core

i7 desktop with 8GB RAM. Our code is open-sourced on GitHub [44,45].

Figure 3.7(b) shows the proof generation and verification times of MProve+ and

MProve. For a constant s, we see a linear growth of proof generation and verification times

of MProve as well as MProve+ with the anonymity set size n. Since the inner product

protocol requires witness sizes to be a power of 2, the witness vectors of MProve+ in

Figure 3.1 are appended with 0’s to convert their size to the next power of 2. For witness

sizes m1 6= m2 such that dlog2m1e = dlog2m2e, the timings in the two cases will not differ

much. Therefore, we observe a step-wise increment in the generation and verification

timings of MProve+. An exchange owning 1000 addresses and wishing to have 49000

cover addresses would spend about 150 minutes in a MProve+ proof generation and the

proof verification would take 20 minutes. An MProve proof of same configuration would

take a minute for generation and verification each. Although the proof generation time for

MProve+ is significantly higher than that of MProve owing to the greater number of group

operations, the timings are not unreasonable for practical deployment. The verification of

an MProve+ proof is around 8 times faster than its generation because the inner product

protocol can be verified using a single multi-exponentiation of size O(2s·n + 2log(s·n))

as explained in Section 3.2.6. Faster verification enables customers of an exchange to

81

verify the proofs without much computational cost and specialized hardware. From the

perspective of an exchange, the privacy benefits combined with the smaller proof sizes of

MProve+ overshadow the higher computational cost in using it.

A notable difference between the MProve+ and MProve protocol is that in MProve+,

we reveal the number of addresses an exchange owns. While this may seem like a privacy

concern, an exchange can create some addresses which have zero amount in them for

the purpose of padding the number of owned addresses. An implication of revealing the

number of owned addresses s is that the proof size as well as generation and verification

times depend on the number of exchange-owned addresses. Figure 3.7(c) shows the de-

pendence of generation and verification timings of MProve+ and MProve with respect to

the number of owned addresses and for a constant anonymity set size. While timings for

MProve remain constant, MProve+ timings grow linearly with s.

3.6 Conclusion

We presented the MProve+ protocol which can be used to provide better privacy than

the MProve/MProvisions protocols if the exchange is careful while choosing the transac-

tion rings spending from source addresses. The MProve+ protocol provides a significant

improvement in terms of proof size over the MProve protocol. The proof generation and

verification times of the MProve+ protocol are also practical. The revelation of the key

images in the MProve+ protocol leaks information about the exchange-owned addresses.

Designing a proof of reserves protocol for Monero which does not explicitly reveal key

images of source addresses remains an open problem.

82

Chapter 4

Revelio: A MimbleWimble Proof of

Reserves Protocol

In this chapter, we propose a proof of reserves protocol for the MimbleWimble [8,9] cryp-

tocurrency scheme. Grin [20] and Beam [21] are cryptocurrencies which are built on the

MimbleWimble proposal. To clarify the design of MimbleWimble, we give a brief overview

of Grin covering the structure of outputs and transactions, the transaction validation pro-

cedure, and the interactive transaction construction procedure. Then we describe non-

interactive zero-knowledge proof of knowledge signatures formalized by Camenisch and

Stadler [46, 47]. These signatures serve as the building blocks for the proof of reserves

protocols in this chapter as well as in the next chapter. Then we present Revelio, the first

proof of reserves protocol for MimbleWimble providing privacy to the exchange.

4.1 Overview of Grin

Grin is a cryptocurrency which became operational on January 15th, 2019 [20]. It is

a permissionless blockchain which uses proof-of-work (PoW) consensus to resolve forks.

Being an implementation of the MimbleWimble protocol, Grin does not have addresses.

To transfer coins, the sender and receiver have to interactively build a transaction. This

is unlike other cryptocurrencies (like Bitcoin) where a sender needs only the receiver’s

address to transfer coins. However, the sender and receiver are not required to be online

at the same time to build a transaction. The required interaction can be performed

asynchronously via media like email.

83

4.1.1 Outputs

Coins are stored in outputs each of which consists of three fields:

1. A flag marking the output as a coinbase output or a plain output.

2. A Pedersen commitment C = kG+ vH where

• k and v are scalars in the prime field Zn with n equal to the order of the group

in the secp256k1 curve [48]. The scalar v represents the amount stored in the

output. The scalar k is chosen randomly to conceal the amount and is called

the blinding factor.

• G is the base point of the secp256k1 curve.

• H is another point on the secp256k1 curve whose discrete logarithm with respect

to G is not known. It is obtained as the SHA256 hash of an encoding of the

point G [49].

3. A range proof which proves that the value v stored in the commitment C is in the

range {0, 1, . . . , 264 − 1}∗.

Coinbase outputs are included by miners to store the mining reward and fees they earn

during block creation. All the non-coinbase outputs are marked as plain outputs.

Grin does not permit the existence of multiple outputs containing the same commit-

ment C. Hence it is convenient to identify an output by the commitment it contains.

4.1.2 Transaction Fields

A Grin transaction consists of a scalar koff ∈ Zn called the kernel offset and a transaction

body. The transaction body itself consists of three fields:

1. A vector of inputs where each input contains the Pedersen commitment of an unspent

output. These inputs will be the sources of coins in the transaction.

2. A vector of outputs representing the destinations of coins in the transaction.
∗As in Monero, the maximum number of indivisible units of the Grin currency which can come into

existence is 264 − 1.

84

3. A vector of transaction kernels†.

Transaction kernels are used to verify the validity of the transaction. Each kernel consists

of five fields:

1. A kernel features flag to indicate whether the kernel is a plain kernel, a coinbase

kernel, or a height-locked kernel.

• Coinbase kernels are used to validate the coinbase outputs included by miners

in blocks.

• Plain kernels are used to validate the inputs and plain outputs in a transaction

or a block.

• Height-locked kernels are similar to plain kernels but have a non-zero lock height

(defined below).

2. A fee represented by a 64-bit unsigned integer.

3. A lock height represented by a 64-bit unsigned integer.

• A kernel with a non-zero lock height is included in a block only if the block height

is at least as large as the lock height. This effectively prevents a transaction

containing a height-locked kernel from appearing in blocks on the blockchain

whose height is less than the lock height.

4. A kernel excess represented by a point on the secp256k1 curve. It is of the form xG

where G is the base point of the secp256k1 curve and x ∈ Zn.

5. A Schnorr signature which can be verified by using the kernel excess as a public key.

• The message used to generate this signature depends on the kernel type.

– For coinbase kernels, the message is the hash of the kernel features flag.

– For plain kernels, it is the hash of the concatenation of the kernel features

flag and the fee.

– For height-locked kernels, it is the hash of the concatentation of the kernel

features flag, the fee, and the lock height.
†Note that the structure of the transaction kernel is not used in the design of Revelio. The details

are presented here only for the sake of completeness.

85

4.1.3 Transaction Validation

Transaction validation proceeds as follows:

1. The transaction body is validated using the following rules.

(a) Each output flag is checked to ensure that the output is a plain output. Coin-

base outputs can appear only as part of a block and not as part of a standalone

transaction.

(b) The range proof associated with each output commitment is verified.

(c) Each kernel features flag is checked to ensure that the kernel is not a coinbase

kernel.

(d) If the kernel is a plain kernel, it is checked to ensure that it has a zero lock

height.

(e) The signature in each kernel is verified using the kernel excess as the public

key and the message generated according to the kernel type.

This step ensures that the kernel excess is of the form xG and not of the

form xG + vH for some non-zero scalar v. If the kernel were of the latter

form, the signature creation would require knowledge of the scalar y such that

yG = xG+ vH. This in turn would imply knowledge of the discrete logarithm

of H with respect to G.

2. To ensure that the sum of the input amounts equals the sum of the output amounts

and fees, the following check is performed.

(a) Suppose the transaction has L inputs, M outputs, and N kernels.

(b) Let the input commitments be C in
1 , C

in
2 , . . . , C

in
L , the output commitments be

Cout
1 , Cout

2 , . . . , Cout
M , and the kernel excesses be X1, X2, . . . , XN .

(c) Let the kernel offset of the transaction be koff ∈ Zn and the fee be f ∈ Zn.

(d) The following equality is checked.

M∑
i=1

Cout
i + fH −

L∑
i=1

C in
i =

N∑
i=1

Xi + koffG. (4.1)

86

To see why equality in equation (4.1) is sufficient to ensure the input and output amounts

in the transaction balance out, let C in
i = kini G+vini H, Cout

i = kouti G+vouti H, andXi = xiG.

The equality in equation (4.1) will hold if the following equalities hold:

L∑
i=1

vini =
M∑
i=1

vouti + f, (4.2)

M∑
i=1

kouti −
L∑
i=1

kini =
N∑
i=1

xi + koff. (4.3)

The equality in equation (4.2) implies that the sum of the input amounts is equal to the

sum of the output amounts and the fee. These terms appear as the multipliers of the

H point in equation (4.1). The equality in equation (4.3) implies that the multipliers of

the G point in equation (4.1) balance out. If the equality in equation (4.1) were satisfied

without the equality in equation (4.2) being satisfied, then we would have the relation(
M∑
i=1

vouti + f −
L∑
i=1

vini

)
H =

(
−

M∑
i=1

kouti +
L∑
i=1

kini +
N∑
i=1

xi + koff

)
G. (4.4)

As the multiplier of H in the above equation is non-zero, multiplying on both sides by its

multiplicative inverse in the field Zn will give the discrete logarithm of H with respect to

G.

The reason for including the kernel offset koff in the transaction is to hide the rela-

tionship between the transaction’s inputs and outputs after it is included in a block along

with other transactions. When transactions are aggregated into a block, their respective

kernel offsets are added and included in the block header as a total kernel offset. All the

inputs, outputs, and kernels from all the transactions are stored in the block as sorted

lists. In fact, a Grin block looks like one big transaction with a block header attached.

There is no indication of which inputs and outputs originally appeared as part of a single

transaction. If there were no kernel offset in a transaction, an adversary could attempt

to deconstruct the individual transactions by trying combinations of inputs, outputs, and

kernels which satisfy the transaction validity equation. With a total kernel offset resulting

from at least two transaction kernel offsets, this strategy cannot be used.

Note that the check which ensures that the transaction inputs refer to unspent out-

puts did not appear as part of the transaction validation. This check is performed during

the block validation.

87

4.1.4 Interactive Transaction Construction

To spend from an output, the spender needs to know the value v and the blinding factor

k used to generate the output commitment. Suppose Alice knows the value and blinding

factor in an unspent output commitment Cin = kAG+ vAH. She wants to send vB coins

to Bob where vB < vA. For a transaction fee f , she wants the remaining vA−vB−f coins

to be stored in a change output with commitment Cchg = kCG + (vA − vB − f)H where

the blinding factor kC is known only to her. Alice and Bob will collaborate to construct

a transaction which will have Cin as input and two outputs Cchg and Cout = kBG+ vBH

where the blinding factor kB is known only to Bob.

Alice and Bob will exchange a data structure called a slate which contains a trans-

action that will be progressively populated during the interaction to yield the final trans-

action. The transaction construction consists primarily of the three steps detailed below.

1. In the first step, Alice will initialize the slate and send it to Bob. She performs the

following steps:

(a) She adds the input being spent Cin to the transaction in the slate.

(b) She adds the amount being transferred vB to the slate.

(c) She sets the lock height of the transaction in the slate to be equal to the current

height h of the blockchain.

(d) She calculates the transaction fee f and adds it to the slate.

• The transaction fee in Grin is currently required to be at least transaction

weight milligrins. For a transaction with L inputs, M outputs, and N

kernels, the transaction weight is

max (4M +N − L, 1) . (4.5)

In our example, the transaction weight is 8 as L = 1,M = 2, and N = 1.

(e) She chooses the change output blinding factor kC uniformly from Zn and cal-

culates the change output commitment Cchg = kCG + (vA − vB − f)H. This

output is added to the transaction in the slate along with a range proof.

(f) She chooses the kernel offset koff uniformly from Zn and calculates the sender

kernel excess secret key as k′A = kC − kA − koff. The kernel offset koff and the

sender kernel excess XA = k′AG are added to the transaction in the slate.

88

(g) She chooses a random nonce rA uniformly from Zn and adds the nonce public

key RA = rAG to the slate.

To summarize, the initial slate sent by Alice to Bob contains Cin, Cout, vB, h, f,XA, RA,

and koff.

2. In the second step, Bob will add a receiver kernel excess, his own nonce public key,

and a Schnorr signature to the slate before returning it to Alice. He performs the

following steps:

(a) He chooses his output blinding factor kB uniformly from Zn and calculates the

output commitment Cout = kBG + vBH using the amount vB from the slate.

This output is added to the transaction in the slate along with a range proof.

(b) He calculates the receiver kernel excess XB = kBG and adds it to the slate. So

the output commitment blinding factor and the receiver kernel excess secret

key are the same.

(c) He chooses a random nonce rB uniformly from Zn and adds the nonce public

key RB = rBG to the slate.

(d) Let ‖ denote the concatenation operator. Bob calculates the receiver Schnorr

signature on the message m = f‖h as (sB, RB) where sB = rB + ekB. The

scalar e ∈ Zn is obtained as

e = SHA256(RA +RB‖XA +XB‖m). (4.6)

He adds the signature to the slate. It can be verified using the public key XB.

3. Upon receiving the slate from Bob, Alice completes the transaction construction as

follows:

(a) She verifies Bob’s signature (sB, RB) by checking the equality

sBG = RB + eXB, (4.7)

where e is calculated as shown in equation (4.6).

(b) She calculates the sender Schnorr signature (sA, RA) on the same message m

as sA = rA + ek′A where rA is her random nonce and k′A is the sender kernel

excess secret key.

89

(c) She sets the transaction kernel excess to be equal to XA +XB.

(d) She sets the signature in the transaction kernel to be equal to (sA + sB, RA +

RB).

After the third step, Alice can broadcast the transaction containing the kernel offset koff,

the input commitment Cin, the output commitments Cout and Cchg, and the transaction

kernel. The kernel itself consists of the fee f , the lock height h, the kernel excess XA+XB,

and the signature (sA + sB, RA + RB). This transaction satisfies the condition given in

equation (4.1) as

Cout + Cchg + fH − Cin

= kBG+ vBH + kCG+ (vA − vB − f)H + fH

− kAG− vAH

= kBG+ (kC − kA)G = kBG+ (kC − kA − koff)G+ koffG

= kBG+ k′AG+ koffG = XB +XA + koffG. (4.8)

During the interaction, Alice does not learn Bob’s output blinding factor kB as he

only reveals the point XB = kBG. But she does know the amount vB in the output

commitment Cout. On the other hand, Bob learns neither Alice’s output blinding factor

k′A nor the change amount vA − vB − f in the commitment Cchg.

4.1.5 Blocks

Blocks in the Grin protocol consist of a block header and a transaction body which has

the same structure as the body of a regular transaction. The block header has fields

specifying the block height, timestamp, and PoW details. Additionally, the header has

the total kernel offset which is obtained as the sum of the kernel offsets of all transactions

which are part of the block. The block’s transaction body is obtained by merging the lists

of inputs, outputs, and kernels from the constituent transactions. If any commitments in

the output list also appear in the input list, they are removed as they are not required for

the block validation (see the left hand side of equation (4.1)). This process is called cut

through. The same cut through process can be applied to outputs appearing in old blocks

after they are spent by transactions in later blocks. This increases scalability of the Grin

90

blockchain requiring network nodes to only keep track of commitments corresponding to

unspent outputs.

The following section gives some signature primitives which are used to the construct

the Revelio protocol.

4.2 Signatures Proving Statements about Discrete Log-

arithms

Let G be a cyclic group of prime order n where solving the discrete logarithm problem

is assumed to be hard. Schnorr [50] proposed a signature scheme proving knowledge of a

secret x ∈ Zn such that X = xG. This is a proof of knowledge of the representation of X

with respect to the generatorG. It is a special case of non-interactive zero-knowledge proof

of knowledge (NIZKPoK) signatures which were formalized by Camenisch and Stadler

[46, 47]. Below we give two kinds of NIZKPoK signatures which are used as building

blocks in both Revelio and Nummatus (Chapter 5).

Let G,H,G′ be generators of the group G such that the discrete logarithm relations

between them are unknown. Suppose a prover Prov wants to prove knowledge of scalars

(α, β) to a verifier Verf such that the following statement holds.

X = αG+ βH ∧ Y = αG′ + βH. (4.9)

The NIZKPoK signature for proving conjunctive statements like in equation (4.9) is de-

fined below.

Definition 4.1. A triple of scalars (c, s1, s2) ∈ Z3
n is a NIZKPoK signature and gives

representations of elements X, Y ∈ G with respect to the generator pairs G,H and G′, H

respectively, if they satisfy

c = H (S, s1G+ s2H + cX, s1G
′ + s2H + cY) , (4.10)

where S = G‖G′‖H‖X‖Y and H is a strong collision resistant hash function [47, Section

3.2.1]. Such a triple will be denoted by

PoK {(α, β) | X = αG+ βH ∧ Y = αG′ + βH} .

91

Prov with the knowledge of (α, β) can generate such a proof as follows:

• She chooses r1, r2 $← Zn randomly from Zn and calculates

c = H (S, r1G+ r2H, r1G
′ + r2H) .

• She sets s1 and s2 as

s1 = r1 − cα,

s2 = r2 − cβ.

Here S might be considered as the message m which contains all the group elements

involved in the signature. To verify the signature, Verf needs to check the equality given

in equation (4.10) using the signature (c, s1, s2). Equation (4.10) holds because of the

following relations

s1G+ s2H + cX = r1G+ r2H − c(αG+ βH) + cX

= r1G+ r2H,

s1G
′ + s2H + cY = r1G

′ + r2H − c(αG′ + βH) + cY

= r1G
′ + r2H.

Now we present a signature scheme which proves disjunctions of statements about dis-

crete logarithms. The main idea behind the following construction was first proposed by

Cramer et al. [51]. In particular, for given group elements X, Y ∈ G, Prov wants to prove

knowledge of (α, β, γ) such that either X = αG + βH ∧ Y = αG′ + βH or Y = γG′

i.e. the following statement holds,

(X = αG+ βH ∧ Y = αG′ + βH) ∨ (Y = γG′) . (4.11)

The NIZKPoK signature for proving disjunctive statements like in equation (4.11) is

defined below.

Definition 4.2. A 5-tuple of scalars (c1, c2, s1, s2, s3) ∈ Z5
n is a NIZKPoK signature of

either

1. the knowledge and equality of the representations of elements X, Y ∈ G with respect

to the generator pairs G,H and G′, H respectively, or

92

2. the knowledge of the discrete logarithm of the element Y ∈ G with respect to the

generator G′,

if they satisfy

c1 + c2 = H (S, V1, V2, V3) (4.12)

where S = G‖G′‖H‖X‖Y and

V1 = s1G+ s2H + c1X,

V2 = s1G
′ + s2H + c1Y, (4.13)

V3 = s3G
′ + c2Y.

Such a 5-tuple will be denoted by

PoK {(α, β, γ) | (X = αG+ βH ∧ Y = αG′ + βH) ∨ (Y = γG′)} .

Suppose Prov knows only γ such that Y = γG′. Then she can generate a proof as

follows:

• She chooses r3, c1, s1, s2 $← Zn randomly from Zn and calculates c2 as

c2 = H(S, V1, V2, r3G
′)− c1, (4.14)

where S = G‖G′‖H‖X‖Y , V1 = s1G+ s2H + c1X, and V2 = s1G
′ + s2H + c1Y .

• She sets s3 as

s3 = r3 − c2γ. (4.15)

This is similar to Schnorr’s signature scheme. Now consider the case when Prov knows

α, β (not γ) such that X = αG + βH and Y = αG′ + βH. She can generate a proof as

follows:

• She chooses r1, r2, c2, s3 randomly from Zn and calculates c1 as

c1 = H(S, r1G+ r2H, r1G
′ + r2H, V3)− c2, (4.16)

where S = G‖G′‖H‖X‖Y and V3 = s3G
′ + c2Y .

93

• She sets s1 and s2 as

s1 = r1 − c1α,

s2 = r2 − c1β. (4.17)

This is similar to the signature generation procedure followed in Definition 4.1.

To verify the signature, Verf needs to verify the equality in equation (4.12) with

the signature (c1, c2, s1, s2, s3). The message S is imbibed in the signature as discussed

before. In this way Prov can prove knowledge of either (α, β) or γ such that equation

(4.11) satisfies. Also Verf does not get to know whether Prov knows (α, β) or γ.

4.3 Revelio Proof of Reserves Protocol

In a MimbleWimble-based cryptocurrency like Grin, coins are stored in outputs which

contain a Pedersen commitment C = kG+vH where k and v are scalars in Zn representing

the blinding factor and amount respectively. Knowledge of both these scalars implies

ownership of the output. We will describe the Revelio protocol in the context of Grin. So

G is the base point of the secp256k1 curve and H is another point on the secp256k1 curve

having unknown discrete logarithm relationship with respect to G. The output also has a

range proof which proves that the amount v stored in the commitment C is in the range

{0, 1, . . . , 264 − 1}.

Like the proof of reserves protocols in the previous chapters, the Revelio protocol

will output a Pedersen commitment Cres to an amount which is equal to the number of

coins owned by the exchange. Given a Pedersen commitment Cliab to the total liabilities

of the exchange, it can prove solvency via a range proof which shows that the amount

committed to in Cres − Cliab is non-negative.

Let Cunspent be the set of all unspent outputs on the Grin blockchain. Let Cown be

the set of unspent outputs owned by the exchange. The exchange will choose a subset

Canon of Cunspent such that Cown ⊆ Canon. The set Canon represents the anonymity set of

unspent outputs which contains the unspent outputs actually owned by the exchange.

This anonymity set will be revealed in the Revelio protocol. But an observer will not be

able to distinguish between members of Canon which belong to Cown from those which do

not.

94

If an exchange does not care about revealing the identity of the unspent outputs it

owns, then there is no need for the Revelio protocol. The exchange can simply reveal

Cown and generate Cres as

Cres =
∑

C∈Cown

C. (4.18)

It can then prove knowledge of scalars k and v such that Cres = kG + vH by giving a

proof of knowledge of the representation of Cres with respect to generators G and H. We

compare the performance of Revelio to this simple non-private protocol in Section 4.5.

4.3.1 Proof Generation

Let G′ be another generator of the secp256k1 curve whose discrete logarithms with respect

to G and H are not known. Let H be equal to the SHA256 hash function.

The Revelio proof of reserves protocol proceeds as follows:

1. The exchange chooses a long-term secret key‡ kexch uniformly from Zn. This key

must remain the same in all the Revelio proofs generated by the exchange, i.e. this

key is chosen when the exchange generates a Revelio proof for the first time and

subsequently remains unchanged.

2. The exchange chooses a list of unspent outputs Canon = (C1, C2, . . . , CN) from the

Grin blockchain such that it owns the outputs in a subset Cown of Canon. The list Canon

is made public by the exchange. Ownership of an output Ci ∈ Cown is equivalent

to knowledge of scalars ki and vi such that Ci = kiG + viH. For Ci ∈ Canon \ Cown,

the exchange may know the value vi if it was the sender in the transaction which

created Ci. But it does not know the blinding factor ki for such an output.

3. For each Ci ∈ Canon such that Ci = kiG+ viH, the exchange generates a curve point

Ii as

Ii =

kiG
′ + viH if Ci ∈ Cown,

yiG
′ if Ci /∈ Cown,

(4.19)

where yi = H (kexch, Ci). The points (I1, I2, . . . , IN) are published by the exchange.

Note that the Iis are a deterministic function of the respective Cis (for a fixed

long-term secret key kexch).
‡The long term secret key is needed for reasons similar to those described in Chapter 2.

95

4. For each i = 1, 2, . . . , N , the exchange uses the method described in Section 4.2 to

generate a NIZKPoK σi = (ci1, c
i
2, s

i
1, s

i
2, s

i
3) of the form

PoK {(α, β, γ) | (Ci = αG+ βH ∧ Ii = αG′ + βH) ∨ (Ii = γG′)} .

The proofs (σ1, σ2, . . . , σN) are published by the exchange.

5. The exchange claims that the commitment Cres given by

Cres =
N∑
i=1

Ii (4.20)

is a Pedersen commitment of the form xtotG
′+ vtotH where vtot is the total amount

of Grin it owns.

Note that the blinding factor xtot is multiplying G′ and not G in the commitment Cres.

The proof of solvency needs to take this into account by generating the Cliab commitment

to have the form yG′ + vliabH.

The intuition behind the protocol construction is as follows. The NIZKPoK σi

proves that if the exchange does not own the output Ci then Ii is a commitment to the

zero amount. Furthermore, it proves that in case the exchange does own the output Ci

it can generate Ii as a commitment only to the amount vi which is committed to by Ci.

These two properties of Ii force the Cres calculated in equation (4.20) to be a commitment

to an amount which is at most equal to the total amount of Grin owned by the exchange.

Cres is not necessarily a commitment to an amount equal to the total amount owned by

the exchange because the exchange can choose Ii to be a commitment to the zero amount

in spite of owning Ci.

The above argument does not clarify the need for introducing the generator G′ or the

need for setting yi equal to H (kexch, Ci). The former is needed to detect collusion between

exchanges while the latter is needed to prevent identification of outputs belonging to the

exchange.

Let us consider the need for G′ first. One can get the same guarantees regarding Cres

by defining Ii as follows for Ci = kiG+ viH.

Ii =

xiG+ viH if Ci ∈ Cown,

yiG if Ci /∈ Cown,

(4.21)

96

where the xis are chosen uniformly from Zn and yi ∈ Zn. Note that for Ci ∈ Cown the

blinding factor in Ii is different from the blinding factor in Ci but the amounts in both

commitments are the same. One can prove that Ii has this structure by giving a NIZKPoK

of the form

PoK {(α, β, γ, δ) | (Ci = αG+ βH ∧ Ii = δG+ βH) ∨ (Ii = γG)} .

While this definition of Ii guarantees that the Cres calculated in equation (4.20) has the

right properties, it does not prevent collusion between exchanges. Two exchanges could

share an output Ci to generate their respective asset proofs without being detected as

the blinding factors xi in equation (4.21) can be chosen freely. By forcing Ii to have the

structure given in equation (4.19), we are ensuring that Ii is a deterministic function of

Ci for Ci ∈ Cown. Consequently, it plays the role of a key image of Ci which enables

detection of collusion between exchanges. In case the same Ii appears in the proofs of

reserves of two different exchanges, collusion between them is revealed. This structure of

Ii is the main innovation in the Revelio protocol.

Finally, the reason for setting yi = H (kexch, Ci) is to make Ii a deterministic function

of Ci even when Ci /∈ Cown, without revealing the non-membership of Ci in Cown. Suppose

Ii was not a deterministic function of Ci for Ci 6∈ Cown. For example, the yis could simply

be chosen uniformly from Zn every time an exchange generated a Revelio proof (the yi

values in the current Revelio proof will be independent of the yi values in the previous

Revelio proofs). It is realistic to assume that a proof of reserves protocol will need to be

executed multiple times by an exchange. In this scenario, the Ii points corresponding to

Ci ∈ Canon\Cown will keep changing in each Revelio proof while the Ii points corresponding

to Ci ∈ Cown will remain the same. Outputs Ci which appear in multiple Revelio proofs of

an exchange with the same Ii will be identified as outputs belonging to Cown. Outputs Ci

which appear in multiple Revelio proofs with different Ii will be identified as outputs not

belonging to Cown.§ Of course, the method of making the yis a deterministic function of Ci

using H and kexch is largely a matter of convenience. An exchange could also implement

such a function using a lookup table where the yis are chosen uniformly and independently

from Zn once and reused in all subsequent Revelio proofs.
§Our earlier proposal had this flaw. One of the anonymous reviewers of our CVCBT 2019 paper

submission identified this flaw and suggested the fix.

97

4.3.2 Proof Verification

The output of an exchange in the Revelio protocol consists of the following:

• The list Canon = (C1, C2, . . . , CN).

• The key image commitment list (I1, I2, . . . , IN).

• The proofs σi = (ci1, c
i
2, s

i
1, s

i
2, s

i
3) for i = 1, 2, . . . , N .

Verification involves the following operations:

1. The verifier checks that the list Canon consists of only unspent outputs.

2. For each i = 1, 2, . . . , N , the verifier verifies the proof σi using the pair (Ci, Ii).

3. The verifier also checks that none of the key image commitments Ii published by

the exchange appear in the proofs of reserves published by other exchanges. If a key

image commitment is common to the proofs published by two different exchanges,

collusion is declared.

4.4 Security Properties

The Revelio protocol provides three main security properties, namely, inflation resistance,

collusion resistance, and privacy. The inflation resistance property prevents a probabilis-

tic polynomial time (PPT) exchange from generating a commitment Cres to an amount

which exceeds its total reserves. The collusion resistance property prevents two or more

exchanges from sharing a common output as source while generating the reserves proofs.

The privacy property ensures that a PPT adversary can extract some secret informa-

tion of the exchange from a polynomial number of Revelio proofs only with a negligible

probability.

4.4.1 Inflation Resistance

In order to generate a Cres commitment to an amount which is greater than the total

amount it owns, an exchange would have to create an Ii which is either a commitment to

the amount in Ci when it does not own Ci or a commitment to an amount larger than the

98

amount in Ci. But this would be a forgery of the NIZKPoK proof σi. So a PPT exchange

can possibly achieve asset inflation with only a negligible probability of success.

4.4.2 Collusion Resistance

When Ii is a commitment to the amount in Ci, the NIZKPoK proof σi guarantees that

Ii is a deterministic function of Ci except with negligible probability. This ensures that

collusion between exchanges (via output sharing) is detected.

4.4.3 Privacy

We consider the scenario when a MimbleWimble exchange publishes f(λ) Revelio proofs

where f(λ) denotes a polynomial of the security parameter λ. Let the size of the ith

anonymity set C
(i)
anon be ni. We denote the ith Revelio proof by

(
C

(i)
anon, I(i),Σ(i)

)
where,

C(i)
anon = (Ci,1, Ci,2, . . . , Ci,ni), (4.22)

I(i) = (Ii,1, Ii,2, . . . , Ii,ni), (4.23)

Σ(i) = (σi,1, σi,2, . . . , σi,ni), (4.24)

are the vectors of outputs, key images, and NIZKPoK signatures respectively. Let the

f(λ) Revelio proofs be denoted by Revact =
(
C

(i)
anon, I(i),Σ(i)

)f(λ)
i=1

. We want to check if

Revact leaks some information about the exchange like which outputs in
(
C

(i)
anon

)f(λ)
i=1

are

owned by the exchange, their amounts, or the total reserves amount. To show that Revact
reveals no such information, we take an approach similar to that has been taken in the

previous chapters. In particular, we construct a simulator SRev that has access to Revact
but does not know any secret information of the exchange. The simulator proceeds as

follows.

She chooses a long term key ksim $← Zn. To construct the ith simulated Revelio proof,

she reads the ith Revelio proof
(
C

(i)
anon, I(i),Σ(i)

)
. In the ith simulated proof, she keeps

C
(i)
anon as it is and changes the other elements in the following manner. Let [ni] denote

the set {1, 2, . . . , ni}. She sets Îi,k = qi,kG
′, where qi,k = H(ksim, Ci,k) for all k ∈ [ni]. She

computes the simulated NIZKPoK proof σ̂i,k using the knowledge of qi,k for all k ∈ [ni].

She constructs the vectors Î(i), Σ̂(i) with the computed quantities Îi,k and σ̂i,k respectively

for all k ∈ [ni]. She sets Revsim =
(
C

(i)
anon, Î(i), Σ̂(i)

)f(λ)
i=1

.

99

If no PPT distinguisher DRev can distinguish between Revact and Revsim except with

a probability negligibly better than that of random guessing, then we can say Revact
does not reveal any information about the exchange. In particular, we define the privacy

experiment RevPriv for the Revelio scheme as follows.

1. SRev sets Rev0 = Revsim and Rev1 = Revact.

2. SRev chooses a bit b $← {0, 1} randomly.

3. SRev sends Revb to DRev.

4. DRev outputs a bit DRev(Revb) as a prediction of b.

Now we give the following definition,

Definition 4.3. The Revelio protocol is said to provide privacy if for every PPT DRev in

the RevPriv experiment, there exists a negligible function negl(λ) of the security parameter

λ such that, ∣∣∣ Pr[DRev(Revb) = b]− 1

2

∣∣∣≤ negl(λ). (4.25)

Now we give the following theorem.

Theorem 4.1. The Revelio protocol provides privacy in the random oracle model under

the DDH assumption.

The proof of Theorem 4.1 is given in Appendix C.

4.5 Performance

Revelio is the first proof of reserves protocol for MimbleWimble exchanges which provides

privacy. Let n be the size of the anonymity set and s be the number of exchange-

owned addresses. A Revelio prover needs to compute (8n− s) group exponentiations and

O(n) point additions and field operations. A Revelio verifier needs to compute 8n group

exponentiations and O(n) point additions and field operations. The proof size is 2n group

elements and 5n scalars.

100

Table 4.1: Proof Generation and Verification Performance for Revelio and Simple

Canon Cown Revelio Revelio Revelio Simple Simple Simple

Size Size Proof Size Gen. Time Ver. Time Proof Size Gen. Time Ver. Time

100 25 0.02 MB 1.13 s 1.14 s 0.92 KB 21.96 ms 22.00 ms

100 50 0.02 MB 1.14 s 1.15 s 1.74 KB 22.12 ms 22.17 ms

100 75 0.02 MB 1.15 s 1.16 s 2.57 KB 22.38 ms 22.40 ms

1000 250 0.22 MB 11.98 s 11.98 s 8.34 KB 23.52 ms 23.56 ms

1000 500 0.22 MB 11.80 s 11.86 s 0.01 MB 25.42 ms 25.42 ms

1000 750 0.22 MB 11.73 s 11.84 s 0.02 MB 27.46 ms 27.46 ms

10000 2500 2.26 MB 109.57 s 110.23 s 0.08 MB 41.36 ms 41.28 ms

10000 5000 2.26 MB 109.87 s 110.78 s 0.16 MB 60.36 ms 60.18 ms

10000 7500 2.26 MB 109.57 s 110.46 s 0.24 MB 79.10 ms 78.73 ms

There is no existing benchmark which can be used to evaluate the relative perfor-

mance of Revelio. Hence, we compare Revelio to the simple non-private protocol de-

scribed in equation (4.18). The simulation code was implemented in Rust using the

rust-secp256k1-zkp library [52]. It is available at [53].

The performance of the Revelio proof generation and verification algorithms is given

in Table 4.1 for anonymity list Canon having sizes 100, 1000, and 10000. For each case,

the percentage of known addresses is either 25%, 50%, or 75%. The table also shows

the performance of the simple non-private protocol as a function of Cown size (the Canon

parameter is irrelevant for this protocol). The execution times were measured on a single

core of an Intel i7-7700 3.6 GHz CPU. The Revelio protocol is orders of magnitude slower

and its proof size an order of magnitude larger compared to the simple non-private proto-

col. Nevertheless the proof sizes and running times of Revelio are practical and the higher

values are justified by the privacy it provides. As the NIZKPoK proof generation and

verification for different outputs can proceed in parallel, running times can be reduced by

parallel execution.

101

4.6 Conclusion

We have presented the design of the first privacy-preserving collusion-resistant proof of

reserves protocol for MimbleWimble exchanges. Our simulations show that the proof gen-

eration and verification times are practical. Here are two potential areas for improvement.

• The collusion-resistance property of Revelio works only if all the exchanges generate

their proofs using the same blockchain state. If an exchange generates a Revelio

proof and then transfers some coins to another exchange before the latter generates

its Revelio proof, then these two exchanges end up effectively sharing some coins.

Enforcing simultaneous proof generation is an interesting direction for future research.

• Revelio provides privacy in the sense that a PPT adversary cannot tell where an

output in Canon belongs to Cown or Canon \ Cown. But this level of privacy is far from

perfect as the adversary knows that the exchange owns some outputs in Canon. Since

the proof sizes and generation/verification times in Revelio increase linearly with the

size of Canon, simply setting Canon to be equal to the whole unspent output set Cunspent

is not a scalable strategy. Development of more efficient proof of reserves protocols

which will enable perfect privacy is another interesting direction for future research.

Bagad et al. [54] address the last issue mentioned above. They propose RevelioBP, a

Bulletproofs [17] based technique for MimbleWimble proof of reserves. RevelioBP gives

proof size logarithmic in terms of the anonymity set. However, the proof generation and

verification times are worse compared to Revelio.

102

Chapter 5

Nummatus: A Proof of Reserves

Protocol for Quisquis

Quisquis [10] is a recently proposed design for an account-based privacy focused cryptocur-

rency. It solves the problem of the always growing UTXO set which plagues other privacy

focused cryptocurrencies like Monero [6] and ZCash [7]. In this chapter∗, we propose

Nummatus, a proof of reserves protocol for Quisquis exchanges†. Our protocol is privacy

preserving in the sense that it only reveals that the exchange-owned accounts belong to

a larger anonymity set of accounts, without identifying which ones are exchange-owned.

The protocol gives a technique to detect collusion between exchanges who use the same ac-

count to generate their respective proofs of reserves. We also describe a non-private proof

of reserves protocol for Quisquis exchanges called Simplus, with the intention of quanti-

fying the cost of deploying a privacy preserving protocol. We give simulation results to

compare the performance of the Nummatus and Simplus protocols. These simulations

show that, while privacy has a cost, deploying Nummatus is a practical proposition.

While no reference implementation of Quisquis exists, the design is novel enough

to warrant designing proof of reserves protocol for it. So when an implementation does

emerge and the Quisquis cryptocurrency becomes available on exchanges, the Nummatus

proof of reserves protocol can be employed in proofs of solvency. Below we describe the
∗This chapter is based on joint work with Arnab Jana.
†Quisquis is Latin for “whoever, whatever” [55]. Nummatus is Latin for “moneyed, rich” [56]. We

chose this name for our protocol as it enables an exchange to show that it is rich enough to meet its

liabilities.

103

Nummatus scheme after giving a brief description of the Quisquis scheme.

5.1 Overview of Quisquis

Privacy focused cryptocurrencies like Monero and Zcash allow users to conceal the source

of coins in a transaction using ring signatures [27] or zk-SNARKs [57]. As the true source

of coins is not revealed, a one-time address in Monero and a commitment in Zcash cannot

be considered spent.‡ Consequently, these cryptocurrencies have poor scalability in the

long term without the opportunity to prune spent outputs from the blockchain.

Quisquis is a cryptocurrency proposal which offers both privacy and scalability [10].

It is an account-based design (as opposed to a UTXO-based design), where each account

consists of a public key and a commitment to the balance in the account. The public

key is generated from the secret key and a randomizing scalar. Hence there are many

possible public keys corresponding to a secret key (unlike Bitcoin where the public key is

a deterministic function of the secret key).

Each Quisquis transaction involves some input accounts and an equal number of

output accounts. Each output account is an updated version of exactly one of the input

accounts, where the update consists of an update of the input account’s public key (the

account secret key remains unchanged) and/or an update of the input account’s balance.

Unlike Bitcoin where the input UTXOs in a transaction represent the source of funds

and output UTXOs represent destinations, the input accounts in a Quisquis transaction

consist of both source accounts and destination accounts. Additionally, some passive

accounts are added to the list of input accounts in the transaction to obfuscate the sources

and destinations of funds. Only the public keys of the passive accounts are updated in

a transaction and their balances are unchanged. On the other hand, the balances of

source accounts are reduced and the balances of destination accounts are increased. For

both source and destination accounts, the public keys are updated. The output accounts

are presented in a lexicographical order to prevent linking of specific output accounts

with input accounts. Once a Quisquis transaction appears on the blockchain, the input
‡Some addresses in Monero can be identified as spent by using techniques from Moser et al. [31],

Kumer et al. [32], Yu et al. [33], and Hinteregger et al. [34]. But these techniques were able to identify

only a small fraction of the RingCT outputs as spent.

104

accounts can be pruned. Quisquis has special transactions for creation and deletion of

accounts. Regular transactions do not create new accounts and this is the main reason

for the scalability of the design. In the following subsections, we present a more precise

description of those aspects of Quisquis that are necessary to present Nummatus.

5.1.1 Quisquis Accounts

Let G be a group§ with prime order p and generator g. The Decisional Diffie-Hellman

(DDH) problem is assumed to be hard in G. A Quisquis account based on G is specified

by four group elements (a, b, c, d). The first two group elements specify a public key

pk = (a, b) = (gt, gk·t) where t ∈ Fp is an arbitrary scalar and k ∈ Fp is the secret key.

The last two group elements specify a commitment which depends on pk and is given by

com = (c, d) = (ar, gvbr) where r ∈ Fp is an arbitrary scalar. Here v ∈ Fp is the value

being committed to by com. In summary, a Quisquis account is of the form

acct = (a, b, c, d) = (a, b, ar, gvbr) =
(
gt, gk·t, gt·r, gv+k·t·r

)
(5.1)

where k is the secret key, v is the value in the account, and r, t are arbitrary scalars.

In the Quisquis design, knowledge of the secret key k is sufficient to prove ownership

of an account and to create transactions which transfer value out of it, i.e. knowledge

of the scalars r and t is not required. This feature allows an entity to perform a secret

key preserving update of an account, even when the entity has no knowledge of the secret

key, value, or scalars used to create the account elements. An update of an account

acct = (a, b, c, d) to an account acct′ = (a1, b1, c1, d1) preserves the secret key k and

changes the amount from v to v + δ if the following equations hold.

b = ak, d = gvck,

b1 = ak1, d1 = gv+δck1. (5.2)

A Quisquis transaction involves account updates of this kind in addition to range proofs

on the values v + δ to ensure that the amount changes are valid.

The account update procedure is as follows:
§In this chapter, we shall follow multiplicative notation for group operations to be consistent with the

Quisquis paper [10]. We shall also denote group elements by small letters unlike the previous chapters

for the same reason.

105

1. Suppose acct in equation (5.1) is the account to be updated.

2. The updater chooses scalars t1, r1, δ ∈ Fp. While t1, r1 are chosen arbitrarily, δ

represents the change in the value stored in the account.

3. The updater computes the updated public key as

pk′ = (a1, b1) = (at1 , bt1). (5.3)

4. The updater computes the updated commitment as

com′ = (c1, d1) = (car1 , dgδbr1). (5.4)

Note that this update can be interpreted as the coordinate-wise product of the

commitment (c, d) with the commitment (ar1 , gδbr1).

5. The updated account is acct′ = (pk′, com′) = (a1, b1, c1, d1).

It is easy to check that the equations in (5.2) hold. Since b = ak, we have

b1 = bt1 =
(
ak
)t1

=
(
at1
)k

= ak1. (5.5)

Since d = gvck and c1 = car1 , we have

d1 = dgδbr1 = gvckgδ
(
ak
)r1

= gv+δ (car1)k = gv+δck1. (5.6)

To see that the updated account has the structure specified in equation (5.1), consider

the following version of acct′.

acct′ = (a1, b1, c1, d1) =
(
at1 , bt1 , car1 , dgδbr1

)
(5.7)

=
(
gt·t1 , gk·t·t1 , gt(r+r1), gv+δ+k·t·(r+r1)

)
(5.8)

=
(
gt
′
, gk·t

′
, gt
′·r′ , gv+δ+k·t

′·r′
)
, (5.9)

where t′ = t · t1 and r′ = t−11 · (r + r1).

In the subsequent discussion, we will find it convenient to denote the above account

update procedure by the notation UpdateAcct(acct, t1, r1, δ).

106

5.1.2 Quisquis Transactions

Suppose Alice owns account acct1 and wants to transfer δ amount to account acct2. Alice

will choose n−2 additional accounts from the blockchain which will play the role of passive

accounts. Let these passive accounts be denoted by acct3, acct4, . . . , acctn. Alice will

construct a transaction with input accounts given by inputs = {acct1, acct2, . . . , acctn}.

The input accounts will be listed in a canonical order like lexicographical ordering to con-

ceal the identity of the non-passive accounts. Alice will update each of the input accounts

to generate output accounts given by outputs = {acct′1, acct′2, . . . , acct′n} where

acct′1 = UpdateAcct(acct1, t1, r1,−δ),

acct′2 = UpdateAcct(acct2, t2, r2, δ),

acct′3 = UpdateAcct(acct3, t3, r3, 0),
... =

...

acct′n = UpdateAcct(acctn, tn, rn, 0),

where the tis and ris are arbitrarily chosen scalars. Note that the balance in the source

account acct1 is reduced by δ and the balance in the destination account acct2 is increased

by δ. The balances of the passive accounts remain the same. The output accounts will

also be presented in a canonical ordering to conceal the mapping from the inputs to the

outputs. Alice then constructs a zero knowledge proof π that convinces the verifier of the

following statements.

1. Each account in outputs is an update of exactly one of the accounts in inputs.

2. The account updates cumulatively satisfy preservation of balances i.e.
∑
δi = 0,

where δi is the update of balance of accti.

3. The balance of the source account does not become negative after the update.

4. The balance of the destination account after the update is in the correct range of

values (range proof).

5. The balances of the passive accounts remain unchanged.

The transaction txn itself consists of the sets inputs, outputs, and the zero knowl-

edge proof π, i.e. txn = (inputs, outputs, π). While our illustrative example had only

107

one source account and one destination account, transactions with multiple sources and

destinations are allowed in Quisquis.

The implication of this transaction model to our context is that exchange-owned

accounts may be updated several times before they are used in the proof of reserves

protocol. If the exchange is not involved in all the updates of an account, it will not know

the discrete logarithm of the group elements forming the public key and commitment with

respect to the generator g. This fact has to be taken into consideration in the proof of

reserves protocol design.

5.2 Nummatus Proof of Reserves Protocol

The overall design of the Nummatus protocol is similar to the proof of reserves proto-

cols which have been discussed in previous chapters. However, unlike these previously

proposed protocols, the Nummatus protocol requires a sequence of elements h1, h2, h3, . . .

from G whose discrete logarithms with respect to g and each other are unknown. The

sequence {hj ∈ G | j = 1, 2, . . .} can be generated by repeatedly hashing g while ensuring

the result falls in the group G. All the exchanges need to agree upon the specific sequence

generation procedure. A Nummatus proof which is generated after the jth Quisquis block

has appeared and before the (j + 1)th block has appeared on the blockchain will use the

jth element hj. We will see that this sequence will be used to serve three purposes,

namely, (1) to compute the commitment to the total reserves amount of the exchange, (2)

to reveal collusion between exchanges sharing account to generate proof of reserves, and

(3) to conceal the identity of the exchange’s accounts across multiple Nummatus proofs.

Suppose an exchange is generating the Nummatus proof of reserves after the jth

Quisquis block. We give a high-level description of the procedure followed by the exchange

below (a more precise description is given in Section 5.2.1).

1. Let Aall be the set of all accounts and let Aown ⊂ Aall be the accounts owned

by the exchange.¶ The exchange chooses a set of accounts Aoth not owned by it,

i.e.Aoth ⊂Aall\Aown. These other accounts are added to the set of exchange-owned

accounts to form the anonymity set Aanon = Aown ∪Aoth.
¶Sets Aall and Aown may change every time a new block is added to the Quisquis blockchain. Here

we consider particular instances of these sets after the jth block is added to the blockchain.

108

2. Let Aanon = [acct1, acct2, . . . , acctn] where

accti = (ai, bi, ci, di) =
(
ai, a

ki
i , a

ri
i , g

viaki·rii

)
. (5.10)

Here ki ∈ Fp is the secret key, vi ∈ Fp is the account balance, ri ∈ Fp is an arbitrary

scalar, and ai = gti for an arbitrary ti ∈ Fp.

For each accti, the exchange creates a Pedersen commitment pi and a non-interactive

zero knowledge proof of knowledge (NIZKPoK, see Section 4.2 for an overview) σi

which proves the disjunction of the following statements:

(a) Account accti is owned by the exchange, i.e. the exchange knows the secret

key ki associated with accti, and pi is a Pedersen commitment to the balance

vi in accti.

(b) Pedersen commitment pi is a commitment to the zero amount.

Note that the proof σi proves that one of these two statements is true without

revealing which one.

3. The exchange publishes the anonymity setAanon, Pedersen commitments [p1, . . . , pn],

and NIZKPoKs [σ1, σ2, . . . , σn]. It claims that pres =
∏n

i=1 pi is a Pedersen commit-

ment to the total reserves of the exchange.

To understand the different parts of the protocol, we need to look at the structure

of the individual Pedersen commitments pi. As discussed above, the discrete logarithm

of hj with respect to g is not known. A Pedersen commitment to an amount v ∈ Fp with

respect to bases g and hj is given by gvhwj where w ∈ Fp is the blinding factor.

When accti ∈Aown, the Nummatus protocol sets pi = gvihkij . So pi is a commitment

to the balance vi of accti and the secret key ki is the blinding factor in this case. When

accti /∈ Aown, the Nummatus protocol sets pi = hwij for a randomly chosen wi ∈ Fp,

making pi a commitment to the zero amount. Let Iown be the indices in {1, 2, . . . , n}

corresponding to accounts in Aown, i.e. accti ∈ Aown for all i ∈ Iown. Let Icown denote

those indices in {1, 2, . . . , n} which are not in Iown. Then we have

pres =
n∏
i=1

pi =
∏
i∈Iown

gvihkij
∏
i∈Icown

hwij = gvreshwres
j , (5.11)

109

where

vres =
∑
i∈Iown

vi, (5.12)

wres =
∑
i∈Iown

ki +
∑
i∈Icown

wi. (5.13)

Thus pres is a Pedersen commitment to the exchange’s total reserves vres. If pliab =

gvliabhwliab
j is a Pedersen commitment to the total liabilities of the exchange, then a proof

of solvency reduces to showing that

presp
−1
liab = gvres−vliabhwres−wliab

j (5.14)

is a commitment to a non-negative amount in the correct range.

If two exchanges share an account accti while generating their respective proofs of

reserves after the jth Quisquis block, then the account will appear in both the anonymity

sets. But this is not enough to prove account sharing collusion between the exchanges.

However, the commitment pi = gvihkij corresponding to a shared account will appear in

both lists of commitments, revealing the collusion.

The reason for choosing a different base hj for generating the Pedersen commitments

after each block is to prevent leaking the identity of exchange-owned accounts across

multiple Nummatus proofs. Suppose the same base h is used to generate commitments

in all Nummatus proofs given by an exchange. Then the commitments of exchange-

owned accounts will remain same across proofs assuming the balances of the accounts

(the vis) remain same. However, the commitments of unknown accounts will be different

in different proofs because of different wis. Thus an observer will be able identify which

accounts belong to the exchange.

A consequence of this design is that exchanges cannot use the same secret key for

multiple accounts if they want to use the Nummatus proof of reserves protocol. This is

not a serious restriction as the convenience afforded by having the same secret key for

multiple accounts is negligible compared to the security provided by having different keys

for different accounts. This issue is further discussed in Section 5.3.3.

Note that the proof σi proves that pi is a Pedersen commitment of the form which

is either gvihkij or hwij . If an exchange does not own the account accti, it will be forced

to set pi to the form hwij . When exchange does own the account, it can set pi to be of the

form gvihkij . In the latter scenario, there is nothing stopping the exchange from setting

110

pi to be of the form hwij . But this will mean that the balance vi of account accti is not

counted in the total reserves amount vres. In other words, the exchange is under-reporting

the reserves it owns. This is not a problem as long as the reserves exceed the liabilities,

since proving solvency is the final goal.

Due to the DDH assumption in the underlying group G, the Nummatus proof of

reserves protocol satisfies the following properties:

• Inflation resistance: No probabilistic polynomial time (PPT) exchange will be able

to generate a commitment to an amount which exceeds the reserves it actually owns.

• Collusion resistance: If two exchanges share an account while generating their re-

spective proofs of reserves (from the same blockchain state), then such collusion can

be detected.

• Privacy : No PPT adversary will be able to distinguish whether an account in the

anonymity set belongs to the exchange or not, estimate account balances or the total

reserves amount.

5.2.1 Proof Generation

Suppose a Quisquis exchange wants to generate a Nummatus proof corresponding to its

reserves after the jth Quisquis block. It performs the following procedure:

1. The exchange chooses the anonymity set of accounts Aanon from the set of all ac-

counts Aall present on the blockchain after the jth Quisquis block has appeared

and before the (j + 1)th block appeared. The exchange owns a subset Aown of

Aanon = [acct1, acct2, . . . , acctn].

2. For each accti ∈Aanon such that accti =
(
ai, a

ki
i , ci, g

vickii
)
, the exchange generates

a Pedersen commitment pi of the form

pi =

g
vihkij if accti ∈Aown,

hwij if accti 6∈Aown,

(5.15)

where the wis are chosen independently and uniformly from Fp.

111

3. For each accti ∈ Aanon given by accti = (ai, bi, ci, di) =
(
ai, a

ki
i , ci, g

vickii
)
, the

exchange generates a NIZKPoK σi = (ei,1, ei,2, si,1, si,2) ∈ F4
p of the form

PoK
{
(α, β)

∣∣∣ (bi = aαi ∧ pid
−1
i =

(
c−1i hj

)α) ∨ (pi = hβj

)}
. (5.16)

The NIZKPoK σi proves that the exchange knows scalars α, β such that either

pi = hβj or bi = aαi and pid−1i =
(
c−1i hj

)α. The algorithm for generating σi is given

in Appendix D.2.

4. The exchange publishes the base hj, the anonymity set Aanon, Pedersen commit-

ments [p1, p2, . . . , pn], and NIZKPoKs [σ1, σ2, . . . , σn]. It claims that pres =
∏n

i=1 pi

is a Pedersen commitment to the total reserves of the exchange.

Equation (5.15) reflects the requirement that pi is a commitment to the account balance

for exchange-owned accounts and a commitment to the zero amount for other accounts.

The choice of blinding factor in each case makes pi a deterministic function of the secret

key and the balance for exchange-owned accounts and a random group element for other

accounts. The NIZKPoK condition in equation (5.16) in fact ensures that an exchange

does not deviate from the constructions of pi given in equation (5.15). It states that either

pi is a commitment to the zero amount or the following conditions (in italics) hold:

1. The discrete logarithm of bi with respect ai is known to the party generating the proof

σi.

As bi = akii , this condition implies that the secret key ki is known to the exchange.

2. The party generating the proof σi knows the discrete logarithm of pid−1i with respect

to c−1i hj. Furthermore, the discrete logarithm is equal to the discrete logarithm of bi

with respect to ai.

As bi = akii , from (5.16) we have

pid
−1
i =

(
c−1i hj

)ki . (5.17)

Since di = gvickii , from the above equation we get

pig
−vic−kii = c−kii hkij =⇒ pi = gvihkij . (5.18)

Thus pi is a commitment to the balance vi in the account accti with blinding factor

ki as given in equation (5.15).

112

5.2.2 Proof Verification

Given a Nummatus proof of reserves from an exchange referring to the blockchain state

after the jth Quisquis block, the verifier checks the following conditions:

1. All the accounts in the anonymity set Aanon must appear on the blockchain immedi-

ately after the jth block. If an account in Aanon does not appear on the blockchain,

the proof is considered invalid.

2. For each i, the NIZKPoK σi must pass the verification procedure given in Appendix

D.2.

3. The commitments pi, i = 1, 2, . . . , n, must not appear in another exchange’s Num-

matus proof. If the same commitments pi appears in the Nummatus proofs of two

different exchanges, then collusion is declared and the proof of reserves is considered

invalid.

5.3 Nummatus Security Properties

Nummatus is equipped with three security properties namely inflation resistance, collusion

resistance, and privacy. In this section we discuss each of them.

5.3.1 Inflation Resistance

Inflation resistance refers to the requirement that a PPT exchange can use the Nummatus

protocol to generate a Pedersen commitment pres to an amount vres which is greater

than the total reserves it owns except with a negligible probability. Suppose pres is a

commitment to vres which is greater than
∑

i∈Iown
vi. Then since

pres =
n∏
i=1

pi =
∏
i∈Iown

pi
∏
i∈Icown

pi, (5.19)

it must be that either pi is not a commitment to zero for some i ∈ Icown or pi is a

commitment to an amount larger than the account balance vi for some i ∈ Iown. For

i ∈ Icown, the exchange does not know the secret key ki and consequently it must generate

the NIZKPoK σi by setting pi to be commitment to the zero amount. For i ∈ Iown, if a

PPT exchange sets pi to be a commitment to a nonzero amount then σi forces this amount

113

to be the account balance vi (see equation (5.18)). So the inflation resistance property of

Nummatus follows from the unforgeability of the NIZKPoKs σi.

5.3.2 Collusion Resistance

The collusion resistance property ensures that two PPT exchanges can share the balance of

a common account while generating Nummatus proofs except with a negligible probability

of being undetected. When pi is not a commitment to zero, the account accti must be

owned by the exchange as the private key ki is needed to create pi as gvihkij . This form of

pi is a deterministic function of vi and ki. So two exchanges sharing accti after the jth

Quisquis block will produce same pi in their proofs. If this happens, then account sharing

collusion is immediately detected.

5.3.3 Privacy

In this section, we prove that the Nummatus protocol provides privacy to the exchange,

even when multiple proofs are observed by an adversary. First, we make the following

assumption.

The secret keys of all exchange-owned accounts in the anonymity set Aanon are all

distinct. This is necessary as the Nummatus protocol cannot provide privacy without

this constraint. To see why, suppose two accounts in Aanon share the same secret key

k. Let their corresponding Pedersen commitments be pi = gvhkj and pi′ = gv
′
hkj where

i, i′ are the account indices and v, v′ are the account balances. An adversary can figure

out that these two accounts are exchange-owned accounts by checking if the equality

pig
−v1 = pi′g

−v2 holds for some (v1, v2) ∈ V 2 where V is the set of all possible amounts.

As the size of V is small, this attack is practical. In fact, the receiver of a funds in a

regular Quisquis transaction has to search through all possible values in V to figure out

the amount received [10, Section 5.2.3].

We consider the scenario when a Quisquis exchange has generated f(λ) Nummatus

proofs following the above requirement, where f(λ) denotes a polynomial of the security

parameter λ. Let these f(λ) proofs be denoted by Numact =
(
hji ,A

(i)
anon,P(i),Σ(i)

)f(λ)
i=1

,

114

where we have the following notation.

A(i)
anon = ((ai,k, bi,k, ci,k, di,k))

ni
k=1 ,

P(i) = (pi,1, pi,2, . . . , pi,ni) ,

Σ(i) = (σi,1, σi,2, . . . , σi,ni) ,

where ni is the size of the ith anonymity set A(i)
anon and pi,k, σi,k are the Pedersen commit-

ment and the NIZKPoK signature corresponding to the kth account in the ith anonymity

set respectively.

Similar to previous chapters, we consider a simulator SNum which do not have any

information of the exchange except having access to Numact. To generate the simulated

proofs, SNum consider the ith Pedersen commitment vector P(i) = (pi,1, pi,2, . . . , pi,ni). She

constructs the ith simulated Pedersen commitment vector P̂(i) = (p̂i,1, p̂i,2, . . . , p̂i,ni) in the

following manner. She chooses qi,k $← Fp and sets p̂i,k = h
qi,k
ji

, for all k ∈ [ni]. After this,

she constructs the simulated signature σ̂i,k using the knowledge of qi,k. After doing this

for all i ∈ [f(λ)], k ∈ [ni], she constructs (Σ̂(i))
f(λ)
i=1 where Σ̂(i) = (σ̂i,1, σ̂i,2 . . . , σ̂i,ni). The

simulated proof is Numsim =
(
hji ,A

(i)
anon, P̂(i), Σ̂(i)

)f(λ)
i=1

.

If no PPT distinguisher DNum can distinguish between Numact and Numsim except

with a probability negligibly better than that of random guessing, then we can say Numact

does not reveal any information about the exchange. In particular, we define the privacy

experiment NumPriv for the Nummatus protocol as follows.

1. SNum sets Num0 = Numsim and Num1 = Numact.

2. SNum chooses a bit b $← {0, 1} randomly.

3. SNum sends Numb to DNum.

4. DNum outputs a bit DNum(Numb) as a prediction of b.

Now we give the following definition.

Definition 5.1. The Nummatus protocol is said to provide privacy if for every PPT

DNum in the NumPriv experiment, there exists a negligible function negl(λ) of the security

parameter λ such that, ∣∣∣ Pr[DNum(Numb) = b]− 1

2

∣∣∣≤ negl(λ). (5.20)

115

Aanon Aown Nummatus Nummatus Nummatus Simplus Simplus Simplus

size size Proof Generat. Verification Proof Generat. Verification

Size Time Time Size Time Time

100 25 0.02 MB 1.15 s 1.15 s 0.006 MB 0.29 s 0.28 s

100 50 0.02 MB 1.16 s 1.16 s 0.011 MB 0.58 s 0.57 s

100 75 0.02 MB 1.19 s 1.19 s 0.017 MB 0.91 s 0.91 s

1000 250 0.29 MB 11.94 s 11.76 s 0.057 MB 3.00 s 2.98 s

1000 500 0.29 MB 11.92 s 11.77 s 0.114 MB 5.97 s 5.95 s

1000 750 0.29 MB 11.83 s 11.74 s 0.171 MB 8.92 s 8.74 s

10000 2500 2.93 MB 112.65 s 113.36 s 0.572 MB 28.99 s 28.06 s

10000 5000 2.93 MB 112.08 s 113.23 s 1.145 MB 56.40 s 56.63 s

10000 7500 2.93 MB 111.71 s 112.87 s 1.717 MB 85.07 s 85.72 s

Table 5.1: Proof Generation and Verification Performance of Nummatus and Simplus

We have the following theorem which is proved in Appendix D.1.

Theorem 5.1. The Nummatus protocol provides privacy in the random oracle model

under the DDH assumption.

5.4 Performance

Nummatus is the first proof of reserves protocol for Quisquis exchanges which keeps the

identities of the exchange accounts private. For benchmarking purposes, we compare

Nummatus to a simple non-private protocol which we will call Simplus.‖ In the Simplus

protocol, the exchange reveals the accounts it owns, i.e. the set Aown is revealed. Like

Nummatus, this protocol outputs a Pedersen commitment to the total reserves of the

exchange. While the Simplus protocol does not provide privacy, it provides reserve amount

privacy. The proof generation in Simplus proceeds as follows:

1. The exchange chooses a set Aown = {acct1, acct2, . . . , acctm} of its own accounts

which are sufficient to meet its liabilities. These accounts need to be present on the
‖Simplus is Latin for “simple” [58].

116

blockchain after the jth Quisquis block has appeared and before the (j+1)th block

appeared.

2. For each accti ∈ Aown given by accti = (ai, bi, ci, di) =
(
ai, a

ki
i , ci, g

vickii
)
, the

exchange generates a Pedersen commitment pi := gvihki and a NIZKPoK ψi =

(ei,1, si,1) ∈ F2
p of the form

PoK
{
α
∣∣∣ (bi = aαi ∧ pid

−1
i =

(
c−1i h

)α)}
. (5.21)

Note that in case of Nummatus, we need to use hj as base of pi to make exchange’s

accounts indistinguishable from accounts not owned by the exchange across multiple

Nummatus proofs. But in case of Simplus, the exchange has already revealed the

accounts owned by it. Therefore we can simply use h instead of hj as a base of pi.

The algorithm for generating ψi is given in Appendix D.3.

3. The exchange publishes the set Aown, Pedersen commitments [p1, p2, . . . , pm], and

NIZKPoKs [ψ1, ψ2, . . . , ψm]. It claims that pres =
∏m

i=1 pi is a Pedersen commitment

to the total reserves of the exchange.

The NIZKPoK in equation (5.21) ensures that the exchange knows the private key ki for

each account accti. Furthermore, by the argument presented in the Nummatus protocol

discussion, the NIZKPoK ensures that pi is a commitment to the account balance vi of

accti. As the exchange’s accounts are revealed in the Simplus protocol, collusion between

exchanges can be detected if the same account appears in the own account lists of two

different exchanges.

The Simplus proof verification proceeds as follows:

1. All the accounts in the set Aown must appear on the blockchain immediately after

the jth block. If not, the proof is considered invalid.

2. For each i, the NIZKPoK ψi must pass the verification procedure given in Appendix

D.3.

A Nummatus prover needs to compute 6n group exponentiations and O(n) point

additions and field operations. A Nummatus verifier needs to compute 6n group expo-

nentiations and O(n) point additions and field operations. The proof size is (5n + 2)

group elements and 4n scalars. Whereas a Simplus prover needs to compute 4n group

117

exponentiations and O(n) point additions and field operations. A simplus verifier needs

to compute 4n group exponentiations and O(n) point additions and field operations. The

proof size is (5n+ 1) group elements and 2n scalars.

The simulation code was implemented in Rust using the rust-secp256k1-zkp library

[59] which has also been used for Numelio [60]. The performance of the Nummatus proof

generation and verification algorithms is given in Table A.2 for anonymity list Aanon

having sizes 100, 1000, and 10000. For each case, the percentage of accounts belonging

to the exchange is either 25%, 50%, or 75%. Table A.2 also shows the performance of

the Simplus protocol as a function of Aown size (the Aanon parameter is irrelevant here).

The execution times were measured on single core of an Intel i7-7700 3.6 GHz CPU. The

Nummatus protocol is at most 3 to 4 times slower and its proof size is at most 4 to 5 times

larger compared to the Simplus protocol. The proof size and execution time of Nummatus

protocol are practical and can be reduced further by parallel signature generations and

verifications for different accounts in Aanon. The higher values of performance parameters

for Nummatus than that of Simplus can be considered as the price we are paying for

privacy.

5.5 Conclusion

In this chapter, we described Nummatus, the first privacy preserving proof of reserves

protocol for Quisquis [10] exchanges. Using Nummatus, a Quisquis exchange can prove

that it holds more reserves than what it owes to its customers without revealing the

reserves amount or the identity of owned accounts. Nummatus also detects the account

sharing collusion between exchanges provided all exchanges generate their proofs after a

particular block is added to the Quisquis blockchain. We give the performance comparison

of Nummatus and a non-private proof of reserves protocol which we call Simplus. Our

simulation shows that deployment of Nummatus is practical and feasible.

118

Chapter 6

Conclusion

In this chapter, we summarize the results of the thesis and describe some open problems.

6.1 Summary of Results

In this thesis, we have described proof of reserves protocols for three privacy focused cryp-

tocurrency schemes, namely, Monero, MimbleWimble, and Quisquis. All the protocols

are based on standard cryptographic assumptions like the hardness of solving the discrete

logarithm and decisional Diffie-Hellman problems. The security proofs use the random

oracle model. No trusted setup is required for any of the proposed protocols. All of them

generate a Pedersen commitment to the total reserves amount of the exchange while con-

cealing its owned addresses/outputs/accounts from the Monero/MimbleWimble/Quisquis

blockchains in a larger anonymity set.

While the proposed proof of reserves protocols for Monero are collusion resistant

and inflation resitant, they are unable to completely hide the identity of the exchange-

owned addresses due to the explicit revelation of their key images. Furthermore, they

are in general unable to preserve the untraceability and amount confidentiality proper-

ties of Monero. They do preserve the unlinkability property of Monero. The MProve+

protocol alleviates the drawback in the MProve/MProvisions protocols to some extent,

but requires the exchange to carefully choose the transaction rings while spending from

source addresses.

In addition to being collusion and inflation resistant, the proposed proof of reserves

protocols for MimbleWimble and Quisquis are able to hide the identity of the exchange-

119

owned outputs/accounts in the anonymity set. Furthermore, they do not affect the privacy

properties of the respective cryptocurrency schemes.

Below, we give a brief summary of each chapter.

• In Chapter 2, we described the MProvisions and MProve proof of reserves protocols

for a Monero exchange. Both the protocols obfuscate the exchange-owned one-time

addresses in a larger anonymity set. To prove that the exchange-owned addresses

are unspent, the corresponding key images are published. For cover addresses in

the anonymity sets, some dummy key images are also published. As a result, each

one-time address in the anonymity set is associated with a real or a dummy key

image. The published key images can be used to detect address sharing collusion

between the exchanges. However, the key image associated with a source address

appears again when the exchange spends from the source address in a future Monero

transaction. The one-to-one association of the key images with the source addresses

in the MProve/MProvisions proof makes a source spending transaction a zero-mixin

transaction and affects the privacy of the exchange as well as the entire Monero

network.

• To solve the drawback mentioned above, we proposed the MProve+ protocol in Chap-

ter 3. MProve+ uses techniques of Bulletproofs [17] and Omniring [22] and publishes

the key images of only the source addresses in the anonymity set. It appears to a PPT

adversary that a published key image can be originated from any one-time address

in the anonymity set. Thus the one-to-one association of the key images and the

addresses in the MProve/MProvisions proofs becomes a many-to-many association in

the MProve+ proofs. This prevents a source spending transaction to become a zero-

mixin transaction provided the exchange chooses the ring of the transaction carefully.

However, the fact that the exchange is spending in the source spending transaction is

revealed for all three protocols. This drawback prevails because of revealing the key

images of the source addresses to prove that they are not spent. Solving this draw-

back and proposing a fully privacy preserving proof of reserves protocol for Monero

remains an open problem.

• In Chapters 4 and 5, we proposed the Revelio and Nummatus proof of reserves proto-

cols for MimbleWimble and Quisquis cryptocurrency exchanges. In MimbleWimble,

120

there are no addresses. Coins are stored in Pedersen commitments called outputs.

Quisquis is an account based model which solves the problem of monotonic growth of

the UTXO set in the privacy focused cryptocurrencies like Monero. In both Revelio

and Nummatus, we have used NIZKPoK signatures formalized by Camenisch and

Stadler [46, 47]. The protocols preserve the privacy of the exchange. The simulation

results show that they can be deployed in practice.

In the next section, we discuss the future scope of work.

6.2 Open Problems

The following is a list of open problems related to proof of reserves protocols.

• Even though Provisions was proposed for Bitcoin more than five years ago, there are

still no proof of reserves protocols for Bitcoin which can handle multisig addresses

or pay-to-script-hash (P2SH) addresses. Ideally, a protocol for such address types

should involve no trusted setup or, at the very least, a universal trusted setup which

allows participation from anyone in the world.

• As mentioned in the previous section, an interesting direction of future work is to

propose a proof of reserves protocol for Monero which can (a) hide that the exchange

is spending in a source spending transaction and (b) preserve the untraceability and

amount confidentiality properties of Monero in general.

• The proof generation and verification times of the protocols proposed in this thesis are

linear in the size of the anonymity set. While this is a bottleneck for exchanges who

want to achieve better privacy by choosing large anonymity sets, it is not prohibitively

expensive. However, linear verification times are inconvenient for customers, who

would prefer constant verification times. Using zk-SNARKs and universal trusted

setups to obtain proof of reserves protocols with improved verification times is another

area for improvement.

121

List of Publications

[1] A. Dutta, S. Bagad, and S. Vijayakumaran, “MProve+: Privacy enhancing proof

of reserves protocol for Monero,” IEEE Transactions on Information Forensics and

Security, 2021.

[2] A. Dutta and S. Vijayakumaran, “MProve: A proof of reserves protocol for Monero

exchanges,” in 2019 IEEE European Symposium on Security and Privacy Workshops

(EuroS&PW), 2019, pp. 330–339.

[3] A. Dutta and S. Vijayakumaran, “Revelio: A MimbleWimble proof of reserves pro-

tocol,” in 2019 Crypto Valley Conference on Blockchain Technology (CVCBT), June

2019, pp. 7–11.

[4] A. Dutta, A. Jana, and S. Vijayakumaran, “Nummatus: A privacy preserving proof

of reserves protocol for Quisquis.” in In: Hao F., Ruj S., Sen Gupta S. (eds) Progress

in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019.Lecture Notes in Computer

Science, vol 11898. Springer, Cham, 2019, pp. 195–215.

122

Bibliography

[1] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provisions: Privacy-

preserving proofs of solvency for Bitcoin exchanges,” in Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security (ACM CCS), New

York, NY, USA, 2015, pp. 720–731.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electionic cash system (2008),” [Accessed

26-Sep-2019]. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[3] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,

and S. Savage, “A fistful of bitcoins: Characterizing payments among men with no

names,” in Proceedings of the 2013 Conference on Internet Measurement Conference,

ser. IMC ’13. New York, NY, USA: Association for Computing Machinery, 2013,

p. 127–140. [Online]. Available: https://doi.org/10.1145/2504730.2504747

[4] D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin transaction graph,”

in Financial Cryptography and Data Security, A.-R. Sadeghi, Ed. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 6–24.

[5] F. Reid and M. Harrigan, An Analysis of Anonymity in the Bitcoin System.

New York, NY: Springer New York, 2013, pp. 197–223. [Online]. Available:

https://doi.org/10.1007/978-1-4614-4139-7_10

[6] Monero website. [Online]. Available: https://getmonero.org/

[7] Zcash website. [Online]. Available: https://z.cash/

[8] T. E. Jedusor, “Mimblewimble,” 2016. [Online]. Available: https://download.

wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

123

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1007/978-1-4614-4139-7_10
https://getmonero.org/
https://z.cash/
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

[9] A. Poelstra, “Mimblewimble,” 2016. [Online]. Available: https://download.

wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

[10] P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi, “Quisquis: A new design for

anonymous cryptocurrencies,” Cryptology ePrint Archive, Report 2018/990, 2018,

https://eprint.iacr.org/2018/990.

[11] IDEX blog. A complete list of cryptocurrency exchange hacks. [Ac-

cessed 27-MAY-2021]. [Online]. Available: https://blog.idex.io/all-posts/

a-complete-list-of-cryptocurrency-exchange-hacks-updated

[12] “Cryptocurrency crime and anti-money laundering re-

port,” 2021 Report, CipherTrace Inc, Feb. 2021. [On-

line]. Available: https://ciphertrace.com/wp-content/uploads/2021/01/

CipherTrace-Cryptocurrency-Crime-and-Anti-Money-Laundering-Report-012821.

pdf

[13] C. Decker, J. Guthrie, J. Seidel, and R. Wattenhofer, “Making Bitcoin exchanges

transparent,” in 20th European Symposium on Research in Computer Security (ES-

ORICS), 2015, pp. 561–576.

[14] Wikipedia contributors. Mt. Gox — Wikipedia, the free encyclopedia. [Accessed

27-MAY-2020]. [Online]. Available: https://en.bitcoin.it/wiki/Mt._Gox

[15] Proof-of-Reserves tool for Bitcoin. [Online]. Available: https://github.com/

ElementsProject/reserves

[16] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret

sharing,” in Advances in Cryptology — CRYPTO ’91. Springer, 1992, pp. 129–140.

[17] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bulletproofs:

Short proofs for confidential transactions and more,” in 2018 IEEE Symposium on

Security and Privacy (IEEE S&P), May 2018, pp. 315–334.

[18] Z. Wilcox, “Proving your Bitcoin reserves,” Bitcoin Talk Forum Post, May 2014.

[Online]. Available: https://bitcointalk.org/index.php?topic=595180.0

124

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://eprint.iacr.org/2018/990
https://blog.idex.io/all-posts/a-complete-list-of-cryptocurrency-exchange-hacks-updated
https://blog.idex.io/all-posts/a-complete-list-of-cryptocurrency-exchange-hacks-updated
https://ciphertrace.com/wp-content/uploads/2021/01/CipherTrace-Cryptocurrency-Crime-and-Anti-Money-Laundering-Report-012821.pdf
https://ciphertrace.com/wp-content/uploads/2021/01/CipherTrace-Cryptocurrency-Crime-and-Anti-Money-Laundering-Report-012821.pdf
https://ciphertrace.com/wp-content/uploads/2021/01/CipherTrace-Cryptocurrency-Crime-and-Anti-Money-Laundering-Report-012821.pdf
https://en.bitcoin.it/wiki/Mt._Gox
https://github.com/ElementsProject/reserves
https://github.com/ElementsProject/reserves
https://bitcointalk.org/index.php?topic=595180.0

[19] K. Chalkias, K. Lewi, P. Mohassel, and V. Nikolaenko, “Distributed auditing proofs

of liabilities,” Cryptology ePrint Archive, Report 2020/468, 2020, https://eprint.iacr.

org/2020/468.

[20] Grin project website. [Online]. Available: https://grin.mw/

[21] “Beam project website.” [Online]. Available: https://www.beam.mw/

[22] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan, and J. Wang,

“Omniring: Scaling up private payments without trusted setup - formal foundations

and constructions of ring confidential transactions with log-size proofs,” Cryptology

ePrint Archive, Report 2019/580, 2019, https://eprint.iacr.org/2019/580.

[23] J. Camenisch, “Group signature schemes and payment systems based on the discrete

logarithm problem,” Ph.D. dissertation, ETH Zürich, 1998.

[24] J. Camenisch and M. Stadler, “Proof systems for general statements about discrete

logarithms,” Tech. Rep., 1997.

[25] Koe, K. M. Alonso, and S. Noether, “Zero to Monero: Second Edition,” The Monero

Project Library, April 2020. [Online]. Available: https://web.getmonero.org/library/

Zero-to-Monero-2-0-0.pdf

[26] S. Noether. (2018) Reserve proof pull request. [Online]. Available: https:

//github.com/monero-project/monero/pull/3027

[27] N. v. Saberhagen, “CryptoNote v 2.0,” White paper, 2013. [Online]. Available:

https://cryptonote.org/whitepaper.pdf

[28] S. Noether and A. Mackenzie, “Ring confidential transactions,” Ledger, vol. 1, pp.

1–18, 2016.

[29] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous group

signature for ad hoc groups,” in Australasian Conference on Information Security

and Privacy. Springer, 2004, pp. 325–335.

[30] J. Yu, M. H. A. Au, and P. Esteves-Verissimo, “Re-thinking untraceability in the

CryptoNote-style blockchain,” Cryptology ePrint Archive, Report 2019/186, 2019,

https://eprint.iacr.org/2019/186.

125

https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2020/468
https://grin.mw/
https://www.beam.mw/
https://eprint.iacr.org/2019/580
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://github.com/monero-project/monero/pull/3027
https://github.com/monero-project/monero/pull/3027
https://cryptonote.org/whitepaper.pdf
https://eprint.iacr.org/2019/186

[31] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan, J. Hen-

nessey, A. Miller, A. Narayanan, and N. Christin, “An empirical analysis of trace-

ability in the Monero blockchain,” Proceedings on Privacy Enhancing Technologies,

vol. 2018, no. 3, pp. 143–163, 2018.

[32] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis of Monero’s

blockchain,” in European Symposium on Research in Computer Security – ESORICS

2017, 2017, pp. 153–173.

[33] Z. Yu, M. H. Au, J. Yu, R. Yang, Q. Xu, and W. F. Lau, “New empirical traceability

analysis of CryptoNote-style blockchains,” in Financial Cryptography and Data Se-

curity, I. Goldberg and T. Moore, Eds. Cham: Springer International Publishing,

2019, pp. 133–149.

[34] A. Hinteregger and B. Haslhofer, “An empirical analysis of Monero cross-

chain traceability,” CoRR, vol. abs/1812.02808, 2018. [Online]. Available:

http://arxiv.org/abs/1812.02808

[35] A. Fiat and A. Shamir, “Witness indistinguishable and witness hiding protocols,”

ACM STOC, 1990.

[36] M. Abe, M. Ohkubo, and K. Suzuki, “1-out-of-n signatures from a variety of keys,”

in Advances in Cryptology — ASIACRYPT 2002. Springer, 2002, pp. 415–432.

[37] J. Katz and Y. Lindell, “Introduction to Modern Cryptography,” CRC, 2nd edition,

2015.

[38] S. Bagad and S. Vijayakumaran, “On the confidentiality of amounts in Grin,” in 2020

Crypto Valley Conference on Blockchain Technology (CVCBT), 2020, pp. 78–82.

[39] MProve simulation code. [Online]. Available: https://github.com/avras/monero/

tree/v0.14.0.2-mprove/tests/mprove

[40] MProvisions simulation code. [Online]. Available: https://github.com/arijitdutta67/

MProveAndMProvisions/tree/v0.13.0.4-mprove/tests/mprovisions

[41] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan, and J. Wang,

“Omniring: Scaling private payments without trusted setup,” in Proceedings of the

126

http://arxiv.org/abs/1812.02808
https://github.com/avras/monero/tree/v0.14.0.2-mprove/tests/mprove
https://github.com/avras/monero/tree/v0.14.0.2-mprove/tests/mprove
https://github.com/arijitdutta67/MProveAndMProvisions/tree/v0.13.0.4-mprove/tests/mprovisions
https://github.com/arijitdutta67/MProveAndMProvisions/tree/v0.13.0.4-mprove/tests/mprovisions

2019 ACM SIGSAC Conference on Computer and Communications Security, ser.

CCS ’19. New York, NY, USA: Association for Computing Machinery, 2019, p.

31–48. [Online]. Available: https://doi.org/10.1145/3319535.3345655

[42] R. Diestel, “Graph Theory,” Springer, 3rd edition, 2005.

[43] Ristretto Encoding of Monero public key. [Online]. Available: https://github.com/

suyash67/curve25519-dalek/blob/ddbffc9/src/edwards.rs#L1167

[44] MProve+ simulation code. [Online]. Available: https://github.com/suyash67/

MProvePlus-Ristretto

[45] MProve simulation code. [Online]. Available: https://github.com/suyash67/

MProve-Ristretto

[46] J. Camenisch and M. Stadler, “Proof systems for general statements about discrete

logarithms,” Dept. of Computer Science, ETH Zürich, Tech. Rep. 260, Mar 1997.

[47] J. Camenisch, “Group signature schemes and payment systems based on the discrete

logarithm problem,” Ph.D. dissertation, ETH Zurich, 1998.

[48] Certicom Research. (2010) SEC 2: Recommended Elliptic Curve Domain

Parameters. [Online]. Available: http://www.secg.org/sec2-v2.pdf

[49] Pedersen commitment implementation in Grin. [Online]. Available: https:

//github.com/mimblewimble/secp256k1-zkp/

[50] C. P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptog-

raphy, 4, pp. 161–174, 1991.

[51] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowledge and

simplified design of witness hiding protocols,” in Advances in Cryptology — CRYPTO

’94, 1994, pp. 174–187.

[52] Grin rust-secp256k1-zkp github repository. [Online]. Available: https://github.com/

mimblewimble/secp256k1-zkp/

[53] Revelio simulation code. [Online]. Available: https://github.com/avras/revelio

127

https://doi.org/10.1145/3319535.3345655
https://github.com/suyash67/curve25519-dalek/blob/ddbffc9/src/edwards.rs#L1167
https://github.com/suyash67/curve25519-dalek/blob/ddbffc9/src/edwards.rs#L1167
https://github.com/suyash67/MProvePlus-Ristretto
https://github.com/suyash67/MProvePlus-Ristretto
https://github.com/suyash67/MProve-Ristretto
https://github.com/suyash67/MProve-Ristretto
http://www.secg.org/sec2-v2.pdf
https://github.com/mimblewimble/secp256k1-zkp/
https://github.com/mimblewimble/secp256k1-zkp/
https://github.com/mimblewimble/secp256k1-zkp/
https://github.com/mimblewimble/secp256k1-zkp/
https://github.com/avras/revelio

[54] S. Bagad and S. Vijayakumaran, “Performance trade-offs in design of mimblewimble

proofs of reserves,” in 2020 IEEE European Symposium on Security and Privacy

Workshops (EuroS&PW), 2020, pp. 367–377.

[55] Wiktionary contributors. quisquis — Wiktionary, the free dictionary. [Accessed

02-Aug-2019]. [Online]. Available: https://en.wiktionary.org/wiki/quisquis

[56] ——. nummatus — Wiktionary, the free dictionary. [Accessed 02-Aug-2019].

[Online]. Available: https://en.wiktionary.org/wiki/nummatus

[57] What are zk-SNARKs? [Accessed 02-Aug-2019]. [Online]. Available: https:

//z.cash/technology/zksnarks/

[58] Wiktionary contributors. simplus — Wiktionary, the free dictionary. [Accessed

02-Aug-2019]. [Online]. Available: https://en.wiktionary.org/wiki/simplus

[59] Grin rust-secp256k1-zkp github repository. [Online]. Available: https://github.com/

mimblewimble/secp256k1-zkp/

[60] A. Dutta and S. Vijayakumaran, “Revelio: A MimbleWimble proof of reserves pro-

tocol,” in 2019 Crypto Valley Conference on Blockchain Technology (CVCBT), June

2019, pp. 7–11.

[61] The size of the spent key images set in monero.

[Online]. Available: https://monero.stackexchange.com/questions/12312/

what-is-the-size-of-the-set-of-spent-key-images-in-monero

[62] Monero block explorer. [Online]. Available: https://moneroblocks.info/stats/

transaction-stats

[63] F. Bao, R. H. Deng, and H. Zhu, “Variations of Diffie-Hellman problem,” in Infor-

mation and Communications Security, 2003, pp. 301–312.

[64] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowledge and

simplified design of witness hiding protocols,” in Advances in Cryptology — CRYPTO

’94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 174–187.

128

https://en.wiktionary.org/wiki/quisquis
https://en.wiktionary.org/wiki/nummatus
https://z.cash/technology/zksnarks/
https://z.cash/technology/zksnarks/
https://en.wiktionary.org/wiki/simplus
https://github.com/mimblewimble/secp256k1-zkp/
https://github.com/mimblewimble/secp256k1-zkp/
https://monero.stackexchange.com/questions/12312/what-is-the-size-of-the-set-of-spent-key-images-in-monero
https://monero.stackexchange.com/questions/12312/what-is-the-size-of-the-set-of-spent-key-images-in-monero
https://moneroblocks.info/stats/transaction-stats
https://moneroblocks.info/stats/transaction-stats

Appendix A

Proofs and Signatures Generation

Procedures in Chapter 2

A.1 Proof of SHVZK Property of MProvisions

In this section, we prove that MProvisions is a perfect special-honest-verifier-zero-knowledge

(SHVZK) protocol. The proof is similar to the proofs given in [1, Appendix C]. The

completeness of the protocol can be checked by calculation. Proof of witness extended

emulation and honest-verifier-zero-knowledge are as follows.

Claim 1. Let P ∗ be an efficient prover. There exists a PPT algorithm (extractor E) for

the MProvisions protocol such that for each i ∈ {1, 2, . . . , n} and any pair of accepting

transcripts with the same A(·)
i and ci 6= c′i, E can output (si ∈ {0, 1}, ki, ei, fi, x̂i) satisfying

the statement in (2.26) for all i ∈ {1, 2, . . . , n}.

Proof. We give the extractor protocol as follows.

For i ∈ {1, 2, . . . , n},

1. Run P ∗ to obtain A(1)
i , A(2)

i , A(3)
i , A(4)

i , A(5)
i .

2. Send ci
$←− Zq to P ∗.

129

3. P ∗ will publish rsi , rki , rei , rfi , rx̂i s.t.

rsiCi + rkiG = ciBi + A
(1)
i

rsiIi + reiH = ciMi + A
(2)
i

rsiPi + rfiH = ciNi + A
(3)
i

rx̂i Hp(Pi) + reiH = ciMi + A
(4)
i

rx̂iG+ rfiH = ciNi + A
(5)
i .

4. Rewind P ∗ to right after step 1 of the protocol.

5. Send c′i
$←− Zq \ {ci} to P ∗.

6. P ∗ will publish r′si , r
′
ki
, r′ei , r

′
fi
, r′x̂i s.t.

r′siCi + r′kiG = c′iBi + A
(1)
i

r′siIi + r′eiH = c′iMi + A
(2)
i

r′siPi + r′fiH = c′iNi + A
(3)
i

r′x̂i Hp(Pi) + r′eiH = c′iMi + A
(4)
i

r′x̂iG+ r′fiH = c′iNi + A
(5)
i .

7. In both the cases, the equations in step (1d) of the MProvisions protocol hold (see

Section 2.4.1). So output: si =
rsi−r

′
si

ci−c′i
, ki =

rki−r
′
ki

ci−c′i
, ei =

rei−r
′
ei

ci−c′i
, fi =

rfi−r
′
fi

ci−c′i
,

x̂i =
rx̂i−r

′
x̂i

ci−c′i
.

Claim 2. (Honest-verifier-zero-knowledge) There exists a PPT simulator S that,

given Pi, Ci, Bi, Ii,Mi, Ni for each i ∈ {1, 2, . . . , n}, can produce a transcript that has the

same distribution as a transcript between the prover and an honest verifier.

Proof. We give the simulator (S) protocol as follows.

For i ∈ {1, 2, . . . , n},

1. Choose rsi , rki , rei , rfi , rx̂i and the challenge ci uniformly at random from Zq.

130

2. Let

A
(1)
i = rsiCi + rkiG− ciBi,

A
(2)
i = rsiIi + reiH − ciMi,

A
(3)
i = rsiPi + rfiH − ciNi,

A
(4)
i = rx̂i Hp(Pi) + reiH − ciMi,

A
(5)
i = rx̂iG+ rfiH − ciNi.

3. Publish (A
(1)
i , A

(2)
i , A

(3)
i , A

(4)
i , A

(5)
i , ci, rsi , rki , rei , rfi , rx̂i) as the transcript.

In the simulated transcript, the six scalars ci, rsi , rki , rei , rfi , rx̂i are chosen uniformly and

independently from Zq and the remaining components of the transcript, namely A
(1)
i ,

A
(2)
i , A(3)

i , A
(4)
i , A

(5)
i are deterministic functions of these scalars. In the actual protocol,

the five scalars u(1)i , u
(2)
i , u

(3)
i , u

(4)
i , u

(5)
i are chosen uniformly and independently from Zq. By

the calculation in step (1d) of the MProvisions protocol, the quantities rsi , rki , rei , rfi , rx̂i
in the actual transcript are uniformly distributed, and independent of each other and

ci (which is itself uniformly distributed). The quantities A(1)
i , A(2)

i , A(3)
i , A

(4)
i , A

(5)
i in

the actual transcript are fixed by the same deterministic functions (given in step (1e)

of the MProvisions protocol) of ci, rsi , rki , rei , rfi , rx̂i which fix these quantities in the

simulated transcript. Hence the actual protocol transcript and the simulated transcript

are identically distributed.

Finally, the proof that si ∈ {0, 1} for each i ∈ {1, 2, . . . , n}, follows directly from the

proof of Protocol 4, given in Appendix B of the Provisions [1] paper.

A.2 Ring Signature Generation in MProve

In this section, we describe the calculation of the regular ring signature γi corresponding

to step 4 of the MProve proof generation procedure described in Section 2.4.2. The

calculation is the same as the algorithm described in Section 2.4.2 with the public key list

Qi = (C ′i, C
′
i − Ci). We use different notation to differentiate the terms from those used

in the linkable ring signature calculation of Appendix A.3.

1. For i such that Pi ∈ Pknown, the private key zi corresponding to the public key

C ′i = ziG is used to create the regular ring signature γi = (di0, t
i
0, t

i
1) where

131

• Using randomly chosen βi from Zq, di1 is calculated as di1 = Hs(Q
i,m, Si0) where

Si0 = βiG.

• Using randomly chosen ti1 from Zq, di0 is calculated as di0 = Hs(Q
i,m, Si1) where

Si1 = ti1G+ di1(C
′
i − Ci).

• The value ti0 is set to βi − di0zi.

2. For i such that Pi /∈ Pknown, the private key zi corresponding to the public key

C ′i − Ci = ziG is used to create the regular ring signature γi = (di0, t
i
0, t

i
1) where

• Using randomly chosen βi from Zq, di0 is calculated as di0 = Hs(Q
i,m, Si1) where

Si1 = βiG.

• Using randomly chosen ti0 from Zq, di1 is calculated as di1 = Hs(Q
i,m, Si0) where

Si0 = ti0G+ di0C
′
i.

• The value ti1 is set to βi − di1zi.

A.3 Linkable Ring Signature Generation in MProve

In this section, we describe the calculation of the linkable ring signature σi corresponding

to step 5 of the MProve proof generation procedure described in Section 2.4.2. The

calculation is the same as the algorithm described in Section 2.2.2 with the public key list

Ri = (Pi, C
′
i − Ci).

Let xi ∈ Zq be the private key corresponding to Pi, i.e. Pi = xiG.

1. For i such that Pi ∈ Pknown, the private key xi is used to create the linkable ring

signature σi = (Ii, c
i
0, s

i
0, s

i
1) where Ii = xiHp(Pi) is the key image.

• Using randomly chosen αi from Zq, ci1 is calculated as

Li0 = αiG, R
i
0 = αiHp(Pi),

ci1 = Hs(R
i,m, Li0, R

i
0). (A.1)

• Using randomly chosen si1 from Zq, ci0 is calculated as

Li1 = si1G+ ci1(C
′
i − Ci),

Ri
1 = si1Hp(C

′
i − Ci) + ci1Ii, (A.2)

ci0 = Hs(R
i,m, Li1, R

i
1).

132

• The value si0 is set to αi − ci0xi.

2. For i such that Pi /∈ Pknown, the private key zi corresponding to the public key

C ′i − Ci = ziG is used to create the linkable ring signature σi = (Ii, c
i
0, s

i
0, s

i
1) where

Ii = ziHp(C
′
i − Ci) is the key image.

• Using randomly chosen αi from Zq, ci0 is calculated as

Li1 = αiG, R
i
1 = αiHp(C

′
i − Ci),

ci0 = Hs(R
i,m, Li1, R

i
1). (A.3)

• Using randomly chosen si0 from Zq, ci1 is calculated as

Li0 = si0G+ ci0Pi, R
i
0 = si0Hp(Pi) + ci0Ii,

ci1 = Hs(R
i,m, Li0, R

i
0). (A.4)

• The value si1 is set to αi − ci1xi.

A.4 Proof of Theorem 2.2

Let Cres = yresG+aresH and let Ci = yiG+aiH be the Pedersen commitment correspond-

ing to the ith one-time address in the anonymity set. As the exchange was successful in

creating the linkable ring signatures σi, it knows wi ∈ Zq such that wiG = C ′i − Ci for

i ∈ Iunknown, i.e. Pi /∈ Pown, with overwhelming probability. This is because creating σi

without knowing either of the private keys corresponding to the public keys {Pi, C ′i −Ci}

amounts to a forgery of the linkable ring signature which is possible only with negligible

probability.

As the exchange was successful in creating the regular ring signatures γi, it knows

wi ∈ Zq such that wiG is equal to either C ′i or C ′i − Ci with overwhelming probability.

Let I1,I2 be a partition of the set Iown such that wiG = C ′i for i ∈ I1 and wiG = C ′i−Ci
for i ∈ I2.

As Iunknown ∪ I1 ∪ I2 = {1, 2, . . . , n}, we can rearrange the terms in equation (2.31)

133

to get ∑
i∈I1

Ci = Cres +
∑
i∈I1

C ′i +
∑

i∈Iunknown∪I2

(C ′i − Ci)

=⇒
∑
i∈I1

yiG+
∑
i∈I1

aiH = yresG+ aresH +
n∑
i=1

wiG. (A.5)

Then equation (A.5) implies that ares =
∑

i∈I1 ai as there are no other H terms in the

RHS of equation (A.5).

A.5 Proof of Theorem 2.3

We need to show that DMPe cannot distinguish between MPe0 and MPe1 with a proba-

bility that is non-negligibly better than that of random guessing. The proofs MPe0 and

MPe1 have the elements
(
P(i),C(i),mi

)f(λ)
i=1

common between them. In addition to these

elements, the actual proof MPe1 has
(
C′(i),Γ(i),Σ(i), C

(i)
res

)f(λ)
i=1

. Instead of having these

elements, the simulated proof MPe0 has
(
Ĉ′

(i)
, Γ̂(i), Σ̂(i), Ĉ

(i)
res

)f(λ)
i=1

. Let us consider each

of these elements.

Consider a particular element C ′i,k ∈ C′(i) and Ĉ ′i,k ∈ Ĉ′
(i)
. The element C ′i,k = zi,kG

when Pi,k ∈ P
(i)
own and C ′i,k = Ci,k + zi,kG when Pi,k /∈ P

(i)
own. Here zi,k = Hs(kexch, Pi,k),

kexch $← Zq. Whereas Ĉ ′i,k = yi,kG for some yi,k = Hs(ksim, Pi,k), ksim $← Zq. As Hs(·)

is modeled as a random oracle, both C ′i,k, Ĉ
′
i,k are uniformly distributed over G for all

i ∈ {1, 2, . . . , f(λ)} and k ∈ {1, 2, . . . , ni}. Hence these elements do not aid DMPe in

estimating b. As C ′i,k and Ĉ ′i,k have identical distribution, both C
(i)
res and Ĉ(i)

res, determined

uniquely by the following equations, are also identically distributed,

C(i)
res =

ni∑
k=1

Ci,k −
ni∑
k=1

C ′i,k, (A.6)

Ĉ(i)
res =

ni∑
k=1

Ci,k −
ni∑
k=1

Ĉ ′i,k. (A.7)

Hence DMPe can discard them as well while estimating b.

Now consider a particular ring signature γi,k = (di,k0 , t
i,k
0 , t

i,k
1) ∈ Γ(i) and γ̂i,k =

(d̂i,k0 , t̂
i,k
0 , t̂

i,k
1) ∈ Γ̂(i). They also do not help DMPe in predicting the value of b. This

is because the corresponding elements are either randomly chosen from Zq, uniquely

determined by randomly chosen elements in Zq, or generated by the random oracle

134

Hs(·) (see Appendix A.2). Now consider a particular linkable ring signature σi,k =

(Ii,k, c
i,k
0 , s

i,k
0 , s

i,k
1) ∈ Σ(i) and σ̂i,k = (Îi,k, ĉ

i,k
0 , ŝ

i,k
0 , ŝ

i,k
1) ∈ Σ̂(i). DMPe can discard (ci,k0 , s

i,k
0 , s

i,k
1)

in σi,k and (ĉi,k0 , ŝ
i,k
0 , ŝ

i,k
1) in σ̂i,k as they are again either randomly chosen from Zq, uniquely

determined by randomly chosen elements in Zq, or generated by the random oracle Hs(·)

(see Appendix A.3).

Now consider Ii,k in σi,k and Îi,k in σ̂i,k. Note that if a particular Pi,k is an exchange-

owned address, then the tuple (Pi,k, Hp(Pi,k), Ii,k) is a DDH triple. To see this, let Pi,k =

ai,kG and Hp(Pi,k) = bi,kG for some bi,k ∈ Zq. As σi,k in this case is signed by Pi,k,

Ii,k = ai,kHp(Pi,k) = ai,kbi,kG. However for any Pi,k, the tuple (Pi,k, Hp(Pi,k), Îi,k) is not a

DDH triple with an overwhelming probability. To see this, note that σ̂i,k is always signed

by Ĉ ′i,k − Ci,k = yi,kG. Hence, Îi,k = yi,kHp(Ĉ ′i,k − Ci,k) = ci,kG for some ci,k ∈ Zq and

ci,k is unlikely to be equal to ai,kbi,k.

We consolidate all the distinct one-time address Pi,k in the f(λ) anonymity sets in

the vector P as,

P =

f(λ)⋃
i=1

P(i) = (P1, P2, . . . , PN), (A.8)

where N is the number of distinct one-time addresses in the f(λ) anonymity sets. We

define the following vectors containing the hashes of the one-time addresses Pi in P, and

the corresponding key images Ii and Îi.

Hp = (Hp(P1), Hp(P2), . . . , Hp(PN)), (A.9)

I = (I1, I2, . . . , IN), (A.10)

Î = (Î1, Î2, . . . , ÎN). (A.11)

Let there be s exchange-owned one-time addresses in P. If Pj1 , Pj2 , . . . , Pjs ∈ P are

exchange-owned addresses, then the tuple (P,Hp, I) contains s DDH triples as follows,

(Pj1 , Hp(Pj1), Ij1),

(Pj2 , Hp(Pj2), Ij2),

...

(Pjs , Hp(Pjs), Ijs).

However as discussed above, the tuple
(
P,Hp, Î

)
contains no DDH triple, except with a

negligible probability. A PPT distinguisher DMPe who can successfully predict b in the

135

MProvePriv experiment with a probability which is non-neglibly better than 1
2
must be

able to distinguish between the tuples (P,Hp, I) and
(
P,Hp, Î

)
.

Now suppose in the MProvePriv experiment, DMPe is replaced by DMPe which re-

ceives (P,Hp, Ib, j1, . . . , js) instead of MPeb. Here I0 is Î and I1 is I. Notice, now DMPe

has the number of the exchange-owned addresses and their locations in the vector P as

additional and relevant information compared to DMPe when predicting the value of b

is of concern. The additional information that DMPe had before does not help DMPe in

predicting the value of b as discussed above. Hence for every PPT adversary DMPe, there

exists another PPT adversary DMPe such that,∣∣∣ Pr[DMPe(MPeb) = b]− 1

2

∣∣∣≤∣∣∣ Pr[DMPe(P,Hp, Ib, j1, . . . , js) = b]− 1

2

∣∣∣ . (A.12)

We define the following notation.

M̃Peb = P,Hp, Ib, j1, . . . , js, (A.13)

M̃Pe0 = P,Hp, I0, j1, . . . , js, (A.14)

M̃Pe1 = P,Hp, I1, j1, . . . , js. (A.15)

The RHS of the inequality (A.12) can be alternatively represented as,∣∣∣ Pr[DMPe(M̃Peb) = b]− 1

2

∣∣∣
=
∣∣∣ Pr[b = 0]Pr[DMPe(M̃Peb) = b|b = 0] + Pr[b = 1]Pr[DMPe(M̃Peb) = b|b = 1]− 1

2

∣∣∣,
=
∣∣∣ 1
2
Pr[DMPe(M̃Pe0) = 0] +

1

2
Pr[DMPe(M̃Pe1) = 1]− 1

2

∣∣∣,
=
∣∣∣ 1
2

(
1− Pr[DMPe(M̃Pe0) = 1]

)
+

1

2
Pr[DMPe(M̃Pe1) = 1]− 1

2

∣∣∣,
=

1

2

∣∣∣ Pr[DMPe(M̃Pe0) = 1]− Pr[DMPe(M̃Pe1) = 1]
∣∣∣,

=
1

2

∣∣∣ Pr[DMPe(P,Hp, I0, j1, . . . , js) = 1]− Pr[DMPe(P,Hp, I1, j1, . . . , js) = 1]
∣∣∣ . (A.16)

From equation (A.16) and inequality (A.12), to prove Theorem 2.3, it is enough to

prove the following claim.

Claim 3. For every PPT DMPe in the MProvePriv experiment, there exists a negligible

function negl1(λ) of the security parameter λ such that,∣∣∣ Pr[DMPe(P,Hp, I0, j1, . . . , js) = 1]− Pr[DMPe(P,Hp, I1, j1, . . . , js) = 1]
∣∣∣≤ negl1(λ).

(A.17)

136

We prove Claim 3 by contradiction. Suppose for a PPT distinguisher DMPe, there

exists a polynomial p(λ) such that,∣∣∣ Pr[DMPe(P,Hp, I0, j1, . . . , js) = 1]− Pr[DMPe(P,Hp, I1, j1, . . . , js) = 1]
∣∣∣≥ 1

p(λ)
.

(A.18)

SoDMPe can distinguish between the two above scenarios with a non-negligible probability.

We will show how to construct a DDH adversary DDDH using DMPe as a subroutine. A

DDH challenger C samples d $← {0, 1}, x, y, z $← Zq. C sets X = xG, Y = yG,Z = zdG,

where z0 = z, z1 = xy. C sends (X, Y, Z) to DDDH. DDDH outputs d′ as the estimate of d.

DDDH wins if d′ = d. We construct DDDH using a hybrid argument [37].

Consider a hybrid simulator S(n)
hyb which is given (P,Hp, I, Î, j1, . . . , js), n ∈ {0, 1, 2, . . . , s}

as input. S(n)
hyb works as follows.

1. It produces a vector I(n) of same length of I and Î, i.e. N . It populates the j1th,

j2th, . . . , jnth elements of I(n) with the j1th, j2th, . . . , jnth elements of I.

2. It populates the other elements of I(n) with uniform elements from G.

3. It outputs (P,Hp, I(n), j1, . . . , js).

Modelling Hs(·) as a random oracle∗ we have,

Pr[DMPe(P,Hp, I1, j1, . . . , js) = 1] = Pr[DMPe(S
(s)
hyb) = 1], (A.19)

Pr[DMPe(P,Hp, I0, j1, . . . , js) = 1] = Pr[DMPe(S
(0)
hyb) = 1], (A.20)

as I0 is Î and I1 is I.

The construction of DDDH having (X, Y, Z) as input is as follows.

1. It queries DMPe and obtains N, s, where 2 ≤ N ≤ f(λ), 1 ≤ s ≤ N − 1.

2. It randomly chooses k∗ $← {1, 2, . . . , s} and j1, j2, . . . , js $← {1, 2, . . . , N}.

3. It defines the following vectors,

PDDH = (P1, . . . , PN),

HDDH
p = (Q1, . . . , QN),

IDDH = (R1, . . . , RN).
∗Note that the s in the subscript Hs denotes that the hash function is scalar-valued. It is not related

to the number of exchange-owned addresses s.

137

4. It chooses x1, y1, x2, y2, . . . , xk∗−1, yk∗−1 $← Zq. For all l ∈ {1, 2, . . . , k∗ − 1}, it sets,

Pjl = xjlG, Qjl = yjlG, Rjl = xjlyjlG.

It also sets,

Pjk∗ = X, Qjk∗ = Y, Rjk∗ = Z.

5. It populates the other elements of PDDH, HDDH
p , and IDDH with uniform elements

from G.

6. It sends
(
PDDH,HDDH

p , IDDH, j1, . . . , js
)
to DMPe and receives b′ as output. It sends

b′ as its response to the challenger C.

Now we have,

Pr
[
DDDH(X, Y, Z) = 1

∣∣ d = 0
]

=
s∑

m=1

Pr[k∗ = m] Pr
[
DDDH(X, Y, Z) = 1

∣∣ d = 0 ∧ k∗ = m
]

=
s∑

m=1

Pr[k∗ = m] Pr
[
DMPe

(
PDDH,HDDH

p , IDDH, j1, . . . , js
)
= 1

∣∣ d = 0 ∧ k∗ = m
]
,

(1)
=

s∑
m=1

1

s
Pr
[
DMPe(S

(m−1)
hyb) = 1

]
,

(2)
=

s−1∑
m=0

1

s
Pr
[
DMPe(S

(m)
hyb) = 1

]
. (A.21)

Here equality (1) comes from the fact that when d = 0, (Pjm , Qjm , Rjm) is not a DDH triple.

Equality (2) is obtained by simple changes in the indices of the summation. Similarly we

obtain the following equation,

Pr
[
DDDH(X, Y, Z) = 1

∣∣ d = 1
]

=
s∑

m=1

Pr[k∗ = m] Pr
[
DMPe

(
PDDH,HDDH

p , IDDH, j1, . . . , js
)
= 1

∣∣ d = 1 ∧ k∗ = m
]
,

(3)
=

s∑
m=1

1

s
Pr
[
DMPe(S

(m)
hyb) = 1

]
. (A.22)

Here equality (3) comes from the fact that when d = 1, (Pjm , Qjm , Rjm) is a DDH triple.

138

Now we have∣∣∣ Pr [DDDH(X, Y, Z) = 1
∣∣ d = 0

]
− Pr

[
DDDH(X, Y, Z) = 1

∣∣ d = 1
] ∣∣∣

(4)
=
∣∣∣ 1
s

(
s−1∑
m=0

Pr
[
DMPe(S

(m)
hyb) = 1

]
−

s∑
m=1

Pr
[
DMPe(S

(m)
hyb) = 1

]) ∣∣∣,
(5)
=

1

s

∣∣∣ Pr [DMPe(S
(0)
hyb) = 1

]
− Pr

[
DMPe(S

(s)
hyb) = 1

] ∣∣∣,
(6)
=

1

s

∣∣∣ Pr[DMPe(P,Hp, I0, j1, . . . , js) = 1]− Pr[DMPe(P,Hp, I1, j1, . . . , js) = 1]
∣∣∣,

(7)

≥ 1

s
p(λ) = p1(λ) (say). (A.23)

Here the equality (4) comes from equations (A.21) and (A.22), the equality (5) comes

from cancellations, the equality (6) comes from equations (A.20) and (A.19), and the

inequality (7) comes from the assumption given in the inequality (A.18). However, the

inequality (A.23) is a contradiction under the DDH assumption. So the inequality (A.18)

cannot be true for any polynomial p(λ). Hence Claim 3 is proved.

A.6 Proof of Theorem 2.4

We need to show that DMPs cannot distinguish between MPs0 and MPs1 with a probability

non-negligibly better than that of random guessing. The elements (Pi,j, Ci,j)
ni,f(λ)
j=1,i=1 are

common in MPs0 and MPs1. Now consider the elements (Bi,j,Mi,j, Ni,j,Txi,j)
j=ni,i=f(λ)
j=1,i=1 in

MPs1 and the elements (B̂i,j, M̂i,j, N̂i,j, T̂xi,j)
ni,f(λ)
j=1,i=1 in MPs0, where

Txi,j = (A
(1)
i,j , A

(2)
i,j , A

(3)
i,j , A

(4)
i,j , A

(5)
i,j , ci,j, rsi,j , rki,j , rei,j , rfi,j , r ˆxi,j),

T̂xi,j = (Â
(1)
i,j , Â

(2)
i,j , Â

(3)
i,j , Â

(4)
i,j , Â

(5)
i,j , ĉi,j, r̂si,j , r̂ki,j , r̂ei,j , r̂fi,j , r̂ ˆxi,j).

They are identically distributed in G and Zq correspondingly.

When a one-time address P repeats across f(λ) anonymity sets, the same key image

I and the simulated key image Î appear again because of the usage of the long term keys

by the exchange as well as the simulator SMPs. We consolidate all the distinct one-time

address Pi,j in the f(λ) anonymity sets in the vector P as,

P =

f(λ),ni⋃
i=1,j=1

{Pi,j} = (P1, P2, . . . , PN), (A.24)

where N is the number of distinct one-time addresses in the f(λ) anonymity sets. Similar

to the proof for MProve given in Appendix A.5, we define the following vectors containing

139

the hashes of the one-time addresses Pi in P, and the corresponding key images Ii and

the simulated key image Îi.

Hp = (Hp(P1), Hp(P2), . . . , Hp(PN)), (A.25)

I = (I1, I2, . . . , IN), (A.26)

Î = (Î1, Î2, . . . , ÎN). (A.27)

Let there be s exchange-owned one-time addresses in P. As discussed in Appendix A.5,

if Pj1 , Pj2 , . . . , Pjs ∈ P are exchange-owned addresses, then the tuple (P,Hp, I) contains

s DDH triples as follows,

(Pj1 , Hp(Pj1), Ij1),

(Pj2 , Hp(Pj2), Ij2),

...

(Pjs , Hp(Pjs), Ijs).

However the tuple
(
P,Hp, Î

)
contains no DDH triple with an overwhelming probability.

The rest of the proof is identical to the proof given in Appendix A.5.

140

Appendix B

Proofs and other Additional Aspects in

Chapter 3

B.1 Difficulties in Hiding the Key Images of Source Ad-

dresses

UnspentProof. Consider a Monero user Bob who owns a one-time address P which is

not spent. Bob wants to show that P is not spent without revealing the corresponding

key image I = Hp(P)
x, where x is the secret key of P i.e. P = Gx. Suppose the public

key pair of Bob is (Bvk, Bsk) = (Gbvk , Gbsk), where bvk and bsk are the secret view key and

the secret spend key respectively. Let the Diffie-Hellman shared secret corresponding to

P be Br
vk, where r ∈ Zq. Then the secret key corresponding to P is x = H(Br

vk)+ bsk and

we have,

I = Hp(P)
H(Brvk)+bsk . (B.1)

We say that a key image I is originated from a one-time address P if P = Gx ∧ I =

Hp(P)
x for the same private key x. In UnspentProof, the key images for all transac-

tions where P has appeared as a ring member are tested. Suppose the set TX(P) =

{txn1, txn2, . . . , txnn} represents the set of all transactions where P has appeared as a ring

member. Each transaction in TX(P) has one or more key images. UnspentProof proves

that each such key image in TX(P) is not originated from P . In this way, P is proved

to be unspent without revealing I. However, to execute the proof, the verifier must know

the Diffie-Hellman shared secret Br
vk. Let I? be a key image which has appeared in one

141

of the transactions in TX(P). Using I?, Br
vk, and P , the verifier computes the following

quantity, termed as the partial spend image.

I?,s = I?Hp(P)
−H(Brvk). (B.2)

From Equation (B.1) and (B.2), if I = I? i.e. P is spent in the transaction being tested,

then we have,

I?,s = Hp(P)
bsk . (B.3)

UnspentProof consists of two multi-base proof of knowledge signatures which are

non-interactive Schnorr-like proofs [23,24]. They involve sets of base elements and public

keys. First, there is a three-base signature σ3 with a base set {G,Bsk, I?,s}. Let the set of

public keys for σ3 be {Q,R, S}. The signature σ3 proves the knowledge of a secret scalar

k such that the following holds,

Q = Gk ∧R = Bk
sk ∧ S = Ik?,s. (B.4)

Here, σ3 is signed with bsk i.e. k = bsk. So we have the set of public keys {Q,R, S} =

{Bsk, B
bsk
sk , I

bsk
?,s }. There is also a two-base signature σ2 with a base set {G,Hp(P)}. Sig-

nature σ2 proves knowledge of a secret scalar k′ such that,

X = Gk′ ∧ Y = Hp(P)
k′ , (B.5)

where {X, Y } is the set of public keys for σ2. Here, σ2 is signed with bsk∗bsk i.e. k′ = bsk∗bsk.

So the set of public keys for σ2 is {X, Y } = {Bbsk
sk , Hp(P)

bsk∗bsk}. When σ3 is signed with

bsk and σ2 is signed with bsk ∗ bsk, we have S = Ibsk?,s and Y = Hp(P)
bsk∗bsk . From Equation

(B.3), it follows S = Y only if I = I?. The UnspentProof protocol proceeds as follows.

1. Both the prover and the verifier compute the base sets of σ3 and σ2.

2. The prover generates the signatures σ3 and σ2 and sends them to the verifier along

with the associated sets of public keys i.e. {Q,R, S} and {X, Y }.

3. The verifier checks if (a) σ3 and σ2 are correct, and (b) R = X. The conditions (a)

and (b) ensure that σ3 is signed with bsk and σ2 is signed with bsk ∗ bsk. If any of

them does not hold, the verifier rejects the proof. Otherwise she proceeds to the

next step.

142

4. If S 6= Y , the verifier declares that P is not spent in the transaction under test

i.e. I? 6= I. If S = Y , P is declared to be spent.

The same procedure is followed for every key image of every transaction in TX(P). In

each case, the same σ2 can be used whereas σ3 changes every time. If the verification

passes for every transaction in TX(P), then P is declared to be unspent. As any PPT

adversary can forge a proof of knowledge signature only with a negligible probability, P

is an unspent address with a probability overwhelmingly close to 1.

Hence by UnspentProof, we can show that a particular one-time address is not spent

without revealing its key image. However, to execute UnspentProof, the prover must

reveal the Diffie-Hellman shared secret (Br
vk in the above example) to let the verifier

calculate the partial spend image (I?,s in the above example). The verifier needs to

calculate the partial spend image i.e. base of σ3 herself. Suppose in the above example

the verifier does not compute the partial spend image herself and the prover sends it to

her. This allows the prover to cheat by sending any element other than I?Hp(P)
−H(Brvk) as

I?,s. Then even if P is spent in the transaction, σ3 and σ2 would be correct and R = X,

S 6= Y would hold. Hence the verifier will declare P is unspent in spite of P being spent

in the transaction.

In spite of the novelty and the simplicity, UnspentProof has the following privacy

concerns.

• To execute UnspentProof, revealing the Diffie-Hellman shared secret Br
vk is unavoid-

able. However an entity which gets to know the Diffie-Hellman shared secret cor-

responding to a one-time address can easily obtain the amount associated with the

one-time address using the method discussed in Section 2.2.3. If UnspentProof is to

be used in the MProve+ protocol to prove that the source addresses are not spent,

then the corresponding Diffie-Hellman shared secrets have to be revealed. Using those

secrets, any adversary can calculate the total reserves amount.

• The base set of the signature σ3 contains Bsk. Also to prove that the Diffie-Hellman

shared secret Br
vk is authentic, the prover Bob needs to produce a two-base signa-

ture with the secret key bvk, the base set {G,R} and the public key set {Gbvk , Rbvk} =

{Bvk, B
r
vk}. This signature reveals Bvk. So to prove that Bob owns a unspent one-time

address P using UnspentProof, Bob needs to reveal the public key pair {Bvk, Bsk} cor-

143

responding to the one-time address P . This leads to the violation of the unlinkability

that the exchange enjoys in Monero network.

The above mentioned reasons forbid the MProve+ protocol from using UnspentProof as

a primitive.

Zero-knowledge set non-membership proof. Another possible way to avoid

revealing key images in proof of reserves protocols is to propose a zero-knowledge set

non-membership proof. Let the set of key images which have appeared on the Monero

blockchain be I. Recall that the set of key images of the exchange-owned source addresses

is defined as I and the anonymity set of one-time addresses is defined as P. We need a

proof of reserves protocol which satisfies the following requirements.

1. The protocol needs a scheme that makes the set I, a zero-knowledge set so that any

information regarding its elements or size is not revealed. The verifier should be

able to verify that no element in I is a member of this set I.

2. For each key image Ii ∈ I and some Pi ∈ P, the prover should be able to show

the knowledge of the secret key xi ∈ Zq such that Pi = Gxi ∧ Ii = Hp(Pi)
xi hold.

The verifier also needs to ensure that all key images in I are distinct. This is to

ensure that no source amount is used more than once in calculating the total reserves

amount. So we need a zero-knowledge set non-membership proof and also a proof

that the elements of the zero-knowledge set satisfy certain algebraic properties.

3. Since each transaction input in Monero has a corresponding key image, the set I is

large and increases monotonically. As the non-membership proof has to be given for

all elements in I, the proof should be practical in terms of the size, the generation

time, and the verification time.∗

4. The security of Monero is based on the discrete logarithm assumption, the decisional

Diffie-Hellman assumption, and the random oracle assumption for hash functions.

Monero does not need any trusted setup. So it is desirable that a proof of reserves

protocol does not use any primitive based on some other assumptions or a trusted

setup.
∗As of July 24, 2020, there are about 3.58 × 107 key images in the Monero blockchain [61]. Also,

the average number of transactions per day (in the last one year) in Monero is ≈ 9000 [62]. Since each

transaction contains 2 inputs on an average, the set I grows approximately by 18,000 every day.

144

We are not aware of any scheme which meets all the criteria mentioned above.

B.2 Proof of Theorem 3.3

Let the f(λ) MProve+ proofs {P(i),C(i),H(i)
p , I

(i), C
(i)
res,Π

(i)
MPP}

f(λ)
i=1 be denoted by MPPact.

We can extract the f(λ) bipartite graphs
(
P(i), I(i),P(i) × I(i)

)f(λ)
i=1

from the f(λ) anonymity

sets and the key image sets i.e.
{
P(i), I(i)

}f(λ)
i=1

. To prove that this is the sole information

that can be extracted from MPPact by a PPT adversary, we construct a simulator SMPP

as follows. SMPP is given only
{
P(i), I(i)

}f(λ)
i=1

. SMPP publishes f(λ) simulated MProve+

proofs (say MPPsim) keeping
{
P(i)

}f(λ)
i=1

as the anonymity sets. SMPP replaces the elements

in
{
I(i)
}f(λ)
i=1

with uniform group elements
{
I′(i)
}f(λ)
i=1

keeping the structures of the bipartite

graphs induced by MPPact as it is. We construct SMPP as follows.

1. From the given input
{
P(i), I(i)

}f(λ)
i=1

, SMPP calculates
(
{C(i),H(i)

p }
f(λ)
i=1

)
using the

Monero blockchain and the hash functions used in Monero.

2. SMPP generates the simulated key images i.e. {I′(i)}f(λ)i=1 from {I(i)}f(λ)i=1 as follows. It

chooses I′(1) by sampling s1 uniform group elements. Suppose in I′(1), I ′1,k is located

in the position of I1,k in I(1) (k ∈ [s1]). If I1,k is repeated in I(j1), I(j2), . . . , I(jr), I ′1,k
is placed in I′(j1), I′(j2), . . . , I′(jr) in the same position where I1,k is located in those

vectors. This is followed for all such k for which I1,k is repeated in the subsequent

proofs. Similar procedure is followed sequentially from i = 2 to f(λ). For example,

I(j) is filled only after filling I(1), I(2), . . . , I(j−1). Uniform group elements are placed

in the locations of I(j) which are not filled up already due to repetition. If any

Ij,k ∈ I(j)(k ∈ [sj]) repeats in subsequent proofs, I ′j,k is placed in those positions.

3. SMPP sets C ′(i)res $← G for each i ∈ [f(λ)].

4. For each i ∈ [f(λ)], SMPP computes (ui, vi, wi, yi, zi, xi) $← Zq and sets stmt(i) =(
P(i),C(i),H(i)

p , I
′(i), C ′(i)res

)
and the challenges as (ui, vi, wi, yi, zi, xi). SMPP samples

A
(i)
S , T

(i)
2,S

$← G, l(i)S , r
(i)
S

$← Zmq , τ
(i)
S , r

(i)
S

$← Zq. It computes t̂(i)S = 〈l(i)S , r
(i)
S 〉. It then

145

computes S(i)
S and T (i)

1,S as follows.

S
(i)
S = ((F)−rA

(i)
S Gα(i)−l(i)S

wi Hβ(i)−θ(i)◦−1◦r(i)S)
− 1
xi

, (B.6)

T
(i)
1,S = (Hδi−t̂

(i)
S G−τ

(i)
S C ′

(i)
res
−z2i

T
(i)
2,S

x2i
)
− 1
xi

, (B.7)

where the values of α(i),β(i),θ(i), and δi are calculated following the definitions

given in Figure 3.3.

SMPP obtains the ith transcript as Π(i)
MPP,S = (A

(i)
S , S

(i)
S , T

(i)
1,S , T

(i)
2,S , l

(i)
S , r

(i)
S , t̂

(i)
S , τ

(i)
S , r

(i)
S).

5. SMPP outputs the simulated proof as MPPsim = {P(i),C(i),H(i)
p , I

′(i), C ′(i)res,Π
(i)
MPP,S}

f(λ)
i=1 .

Because of step 2 of the construction of SMPP, the f(λ) bipartite graphs which can be

extracted from
{
P(i), I(i)

}f(λ)
i=1

and
{
P(i), I′(i)

}f(λ)
i=1

are the same except having one set of

different disjoint vertices (key images). To show that this is the sole information that can

be extracted from MPPact, we propose the following privacy experiment MPPPriv for the

MProve+ scheme as follows.

1. SMPP sets MPP0 = MPPsim and MPP1 = MPPact.

2. SMPP chooses a bit b $← {0, 1} randomly.

3. SMPP sends MPPb to DMPP.

4. DMPP outputs a bit DMPP(MPPb) as a prediction of b.

Note that MPP0 is computed using no other information in MPP1 except the f(λ)

bipartite graphs extracted from
{
P(i), I(i)

}f(λ)
i=1

. If no PPT adversary in the above ex-

periment can successfully predict b with a probability non-negligibly better than 1
2
, then

Theorem 3.3 holds. Now we make the following claim and prove it.

Claim 4. For every PPT DMPP in the MPPPriv experiment, there exists a negligible func-

tion negl(λ) of the security parameter λ such that,∣∣∣ Pr[DMPP(MPPb) = b]− 1

2

∣∣∣≤ negl(λ). (B.8)

146

The LHS of the inequality (B.8) can be alternatively represented as,∣∣∣ Pr[DMPP(MPPb) = b]− 1

2

∣∣∣
=
∣∣∣ Pr[b = 0]Pr[DMPP(MPPb) = b|b = 0] + Pr[b = 1]Pr[DMPP(MPPb) = b|b = 1]− 1

2

∣∣∣,
=
∣∣∣ 1
2
Pr[DMPP(MPP0) = 0] +

1

2
Pr[DMPP(MPP1) = 1]− 1

2

∣∣∣,
=
∣∣∣ 1
2
(1− Pr[DMPP(MPP0) = 1]) +

1

2
Pr[DMPP(MPP1) = 1]− 1

2

∣∣∣,
=

1

2

∣∣∣ Pr[DMPP(MPP0) = 1]− Pr[DMPP(MPP1) = 1]
∣∣∣,

=
1

2

∣∣∣ Pr[DMPP(MPPact) = 1]− Pr[DMPP(MPPsim) = 1]
∣∣∣ . (B.9)

By equation (B.9), Claim 4 can be alternatively represented as,

Claim 5. For any PPT distinguisher DMPP, there exists a negligible function negl1(λ),

such that ∣∣∣ Pr[DMPP(MPPact) = 1]− Pr[DMPP(MPPsim) = 1]
∣∣∣≤ negl1(λ). (B.10)

Let us consider the elements of MPPact and MPPsim. For each i ∈ f(λ), P(i),C(i),H(i)
p

are common in both of them. C(i)
res and C ′(i)res are distributed uniformly in G. By observa-

tion, the elements of the transcript Π(i)
MPP,S and Π

(i)
MPP are identically distributed†.

Let us consolidate all the distinct elements of
⋃f(λ)
i=1 I′(i) and

⋃f(λ)
i=1 I(i) in the vectors

Ic and I′c respectively in a lexicographic order. Let

Ic = {I1, I2, . . . , IN}, (B.11)

I′c = {I ′1, I ′2, . . . , I ′N}, (B.12)

where N =
∣∣∣⋃f(λ)

i=1 I(i)
∣∣∣. Let us define the following sets,

Porig = {Porig(I1),Porig(I2), . . . ,Porig(IN)}, (B.13)

Hp(Porig) = {Hp(Porig(I1)),Hp(Porig(I2)), . . . ,Hp(Porig(IN))}, (B.14)

where the vector Hp(Porig(Ik)), k ∈ [N] contains the hashes of the elements of the set

Porig(Ik). Because of the way I′(i)s are populated (discussed in step 2 of the construction

of MPPsim), (Porig,Hp(Porig)) are the same for both Ic and I′c. We also have,

Porig(Ik) = Porig(I
′
k), ∀Ik ∈ Ic, I ′k ∈ I′c, k ∈ [N]. (B.15)

†The elements are either uniformly distributed in G and Zq or fixed by the verification equations

(V1),(V2), and (V3).

147

From the above discussion, it is clear that to prove Claim 5, it is enough‡ to prove

that for every PPT distinguisher DMPP, there exists a negligible function negl′(λ) such

that,∣∣∣ Pr[DMPP(Porig,Hp(Porig), Ic) = 1]− Pr[DMPP(Porig,Hp(Porig), I′c) = 1]
∣∣∣≤ negl′(λ).

(B.16)

Consider the set Porig(Ij),Porig(I
′
j) ∈ Porig, where Ij ∈ Ic and I ′j ∈ I′c (Porig(Ij) =

Porig(I
′
j) as discussed above). Let the set Porig(Ij) be,

Porig(Ij) = (P1, P2, . . . , Poj), oj ∈ Zq. (B.17)

There exists a secret index mj ∈ [oj] for which the following equation holds.

Pmj = Gxmj ∧ Ij = Hp(Pmj)
xmj . (B.18)

LetHp(Pmj) = Gyj for some yj ∈ Zq. Then we have the following decisional Diffie-Hellman

(DDH) triple from Equation (B.18),

(
Pmj = Gxmj , Hp(Pmj) = Gyj , Ij = Gxmj yj

)
. (B.19)

However when Ij is replaced by I ′j = Gzj (say), zj ∈ Zq, then the triple (Pmj , Hp(Pmj), I
′
j)

is not a DDH triple for any mj ∈ [oj]. Hence the collection (Porig(Ij),Hp(Porig(Ij)), Ij)

contains a single DDH triple for a secret combination (Pmj , Hp(mj), Ij) for all Ij ∈ Ic.

So there are N such DDH triples in (Porig,Hp(Porig), Ic). However, with an overwhelm-

ing probability there is no such DDH triple in (Porig,Hp(Porig), I′c). Suppose for a PPT

distinguisher DMPP, there exists a polynomial p(λ) such that,∣∣∣ Pr[DMPP(Porig,Hp(Porig), Ic) = 1]− Pr[DMPP(Porig,Hp(Porig), I′c) = 1]
∣∣∣≥ 1

p(λ)
. (B.20)

SoDMPP can distinguish between the two above scenarios with a non-negligible probability.

We will show how to construct a DDH adversary DDDH using DMPP as a subroutine. A

DDH challenger C samples b $← {0, 1}, x, y, z $← Zq. C sets X = Gx, Y = Gy, Z = Gzb ,

where z0 = z, z1 = xy. C sends (X, Y, Z) to DDDH. DDDH outputs b′ as the estimate of b.

DDDH wins if b′ = b. We construct DDDH using a hybrid argument.
‡Some of the vertices containing one-time addresses and edges of the bipartite graphs are removed

while constructing the originating sets. The removed vertices and edges are the same for both the cases.

Hence we can ignore them as well.

148

Consider a hybrid simulator S(n)
hyb which is given (Porig,Hp(Porig), Ic), n ∈ {0, 1, 2, . . . , N}.

S
(n)
hyb works as follows.

1. It keeps the first n elements of Ic as it is.

2. It sets the n+ 1 to N elements of Ic as uniform elements of G. Let the modified Ic

be I(n)c .

3. It outputs (Porig,Hp(Porig), I(n)c).

By observation we have,

Pr[DMPP(Porig,Hp(Porig), Ic) = 1] = Pr[DMPP(S
(N)
hyb) = 1], (B.21)

Pr[DMPP(Porig,Hp(Porig), I′c) = 1] = Pr[DMPP(S
(0)
hyb) = 1]. (B.22)

The construction of DDDH having (X, Y, Z) as input is as follows.

1. It queries DMPP and obtains N where 2 ≤ N ≤
∑f(λ)

i=1 ni.

2. It randomly chooses k∗, o1, o2, . . . , oN $← [N]. It then chooses m1
$← [o1],m2

$←

[o2], . . . ,mk∗
$← [ok∗].

3. It defines the following sets for all j ∈ [N],

Porig(Ij) = {Pj,1, Pj,2, . . . , Pj,oj},

Hp(Porig(Ij)) = {Qj,1, Qj,2, . . . , Qj,oj}.

4. It chooses x1, y1, x2, y2, . . . , xk∗−1, yk∗−1 $← Zq. For all j ∈ [k∗ − 1], it sets,

Pj,mj = Gxj , Qj,mj = Gyj , Ij = Gxjyj .

It also sets,

Pk∗,mk∗ = X, Qk∗,mk∗ = Y, Ik∗ = Z.

5. It sets Ik∗+1, Ik∗+2, . . . , IN as uniform elements from G. It populates other elements

of (Porig(Ij),Hp(Porig(Ij)) with uniform elements from G for all j ∈ [N].

149

6. It defines the following sets,

IDDH = {I1, . . . , IN}

Porig,DDH = {Porig(I1), . . . ,Porig(IN)}

Hp(Porig,DDH) = {Hp(Porig(I1)), . . . ,Hp(Porig(IN))}.

7. It sends (Porig,DDH,Hp(Porig,DDH), IDDH) to DMPP and receives b′ as output. It sends

b′ as its response to the challenger C.

Now we have,

Pr
[
DDDH(X, Y, Z) = 1

∣∣ b = 0
]
=

N∑
l=1

Pr[k∗ = l] Pr
[
DDDH(X, Y, Z) = 1

∣∣ b = 0 ∧ k∗ = l
]
,

=
N∑
l=1

Pr[k∗ = l] Pr
[
DMPP(Porig,DDH,Hp(Porig,DDH), IDDH) = 1

∣∣ b = 0 ∧ k∗ = l
]
,

(1)
=

N∑
l=1

1

N
Pr
[
DMPP(S

(l−1)
hyb) = 1

]
,

(2)
=

N−1∑
l=0

1

N
Pr
[
DMPP(S

(l)
hyb) = 1

]
. (B.23)

Here equality (1) comes from the fact that when b = 0, (Pl,ml , Ql,ml , Il) is not a DDH triple.

Equality (2) is obtained by simple changes in the indices of the summation. Similarly we

obtain the following equation,

Pr
[
DDDH(X, Y, Z) = 1

∣∣ b = 1
]
=

N∑
l=1

Pr[k∗ = l] Pr
[
DDDH(X, Y, Z) = 1

∣∣ b = 1 ∧ k∗ = l
]
,

=
N∑
l=1

Pr[k∗ = l] Pr
[
DMPP(Porig,DDH,Hp(Porig,DDH), IDDH) = 1

∣∣ b = 1 ∧ k∗ = l
]
,

=
N∑
l=1

1

N
Pr
[
DMPP(S

(l)
hyb) = 1

]
. (B.24)

150

We have,∣∣∣ Pr [DDDH(X, Y, Z) = 1
∣∣ b = 0

]
− Pr

[
DDDH(X, Y, Z) = 1

∣∣ b = 1
] ∣∣∣

(3)
=
∣∣∣ 1

N

(
N−1∑
l=0

Pr
[
DMPP(S

(l)
hyb) = 1

]
−

N∑
l=1

Pr
[
DMPP(S

(l)
hyb) = 1

]) ∣∣∣,
(4)
=

1

N

∣∣∣ Pr [DMPP(S
(0)
hyb) = 1

]
− Pr

[
DMPP(S

(N)
hyb) = 1

] ∣∣∣,
(5)
=

1

N

∣∣∣ Pr[DMPP(Porig,Hp(Porig), I′c) = 1]− Pr[DMPP(Porig,Hp(Porig), Ic) = 1]
∣∣∣,

(6)

≥ 1

N
p(λ),

= p1(λ) (say). (B.25)

Here the equality (3) comes from equations (B.23) and (B.24), the equality (4) comes from

cancellations, the equality (5) comes from equations (B.22) and (B.21), and the inequality

(6) comes from the assumption given in the inequality (B.20). However, the inequality

(B.25) is a contradiction under the DDH assumption. So the inequality (B.20) cannot be

true for any polynomial p(λ). Hence there exists a negligible function negl′(λ) such that

the inequality (B.16) holds.

151

Appendix C

Proof of Theorem 4.1

We need to prove that no PPT distinguisher DRev in the RevPriv experiment can dis-

tinguish between Rev0 = (C
(i)
anon, Î(i), Σ̂(i))

f(λ)
i=1 and Rev1 = (C

(i)
anon, I(i),Σ(i))

f(λ)
i=1 with a

probability non-negligibly better than 1
2
, i.e. inequality (4.25) holds for every PPT dis-

tinguisher DRev. First consider (Σ(i))
f(λ)
i=1 in Rev1 and (Σ̂(i))

f(λ)
i=1 in Rev0. The elements in

these two NIZKPoK signatures are identically distributed and give DRev no advantage in

predicting b. Next, note that there might be many outputs in (C
(i)
anon)

f(λ)
i=1 which appear

across multiple proofs. If they are owned by the exchange, then the corresponding key

images in (I(i))
f(λ)
i=1 will be the same. If they are not owned by the exchange, then also

the corresponding key images will be the same in (I(i))
f(λ)
i=1 because of using the long term

secret key kexch. Whenever an output repeats in (C
(i)
anon)

f(λ)
i=1 , the same simulated key image

appears in (̂I(i))
f(λ)
i=1 because of the long term key ksim used by the simulator SRev. After

discarding the duplicate elements in (C
(i)
anon, I(i), Î(i))

f(λ)
i=1 , we obtain the following vectors.

C = (C1, C2, . . . , CN), (C.1)

I = (I1, I2, . . . , IN), (C.2)

Î = (Î1, Î2, . . . , ÎN), (C.3)

where N is the number of distinct outputs in (C
(i)
anon)

f(λ)
i=1 . Note that N ≤

∑f(λ)
i=1 ni where

ni is the size of the ith anonymity set. Let v = (v1, v2, . . . , vN) denote the amounts

corresponding to the outputs in C. Also let Cj1 , Cj2 , . . . , Cjs ∈ C be s exchange-owned

outputs in C. We define a vector vH = (v1H, v2H, . . . , vNH) and G′ = (G′, G′ . . . , G′︸ ︷︷ ︸
N times

).

We observe that there are s DDH triples in the tuple (C−vH,G′, I−vH). In particular,

consider the jlth elements in C and I, l ∈ [s]. They are respectively Cjl = kjlG + vjlH

152

and Ijl = kjlG
′ + vjlH, as Cjl is an exchange-owned output. Hence the jlth elements of

C− vH and I− vH are kjlG and kjlG′ respectively. If G′ = k′G for some k′ ∈ Zn, then

we have the following DDH triples in the tuple (C− vH,G′, I− vH).

(Cj1 − vj1H,G′, Ij1 − vj1H) = (kj1G, k
′G, kj1k

′G)

(Cj2 − vj2H,G′, Ij2 − vj2H) = (kj2G, k
′G, kj2k

′G),

...

(Cjs − vjsH,G′, Ijs − vjsH) = (kjsG, k
′G, kjsk

′G).

However in the other locations in (C−vH,G′, I−vH), there are no DDH triples (except

with a negligible probability). To see this, consider an index j ∈ [N], j /∈ {j1, j2, . . . , js}.

As Cj is not an exchange-owned output, Ij = yjG
′ for some yj ∈ Zn. Hence Ij − vjH =

yjG
′ − vjH = k′jG for some k′j which is unlikely to be equal to k′kj. As Îj = qjG

′ for

all j ∈ [N], there are no DDH triples in the tuple (C − vH,G′, Î − vH) (except with a

negligible probability).

Now suppose in the RevPriv experiment, DRev is replaced by DRev which receives

(C,v,G′, Ib, j1, . . . , js) instead of Revb. Here I0 is Î and I1 is I. Notice, now DRev has the

locations of the exchange-owned outputs and the amounts of all the outputs as additional

and relevant information compared to DRev when predicting the value of b is of concern.

The additional information ((Σ(i))
f(λ)
i=1 , duplicate values in C, I, Î) that DRev has compared

to DRev does not help DRev in predicting the value of b as discussed above. Hence for

every PPT adversary DRev, there exists another PPT adversary DRev such that,∣∣∣ Pr[DRev(Revb) = b]− 1

2

∣∣∣≤∣∣∣ Pr[DRev(C,v,G
′, Ib, j1, . . . , js) = b]− 1

2

∣∣∣ . (C.4)

We define the following notation.

R̃evb = C,v,G′, Ib, j1, . . . , js, (C.5)

R̃ev0 = C,v,G′, I0, j1, . . . , js, (C.6)

R̃ev1 = C,v,G′, I1, j1, . . . , js. (C.7)

153

The RHS of the inequality (C.4) can be alternatively represented as,∣∣∣ Pr[DRev(R̃evb) = b]− 1

2

∣∣∣
=
∣∣∣ Pr[b = 0]Pr[DRev(R̃evb) = b|b = 0] + Pr[b = 1]Pr[DRev(R̃evb) = b|b = 1]− 1

2

∣∣∣,
=
∣∣∣ 1
2
Pr[DRev(R̃ev0) = 0] +

1

2
Pr[DRev(R̃ev1) = 1]− 1

2

∣∣∣,
=
∣∣∣ 1
2

(
1− Pr[DRev(R̃ev0) = 1]

)
+

1

2
Pr[DRev(R̃ev1) = 1]− 1

2

∣∣∣,
=

1

2

∣∣∣ Pr[DRev(R̃ev0) = 1]− Pr[DRev(R̃ev1) = 1]
∣∣∣,

=
1

2

∣∣∣ Pr[DRev(C,v,G
′, I0, j1, . . . , js) = 1]− Pr[DRev(C,v,G

′, I1, j1, . . . , js) = 1]
∣∣∣ .
(C.8)

From equation (C.8) and inequality (C.4) to prove Theorem 4.1, it is enough to prove the

following claim.

Claim 6. For every PPT DRev in the RevPriv experiment, there exists a negligible func-

tion negl1(λ) of the security parameter λ such that,∣∣∣ Pr[DRev(C,v,G
′, I0, j1, . . . , js) = 1]− Pr[DRev(C,v,G

′, I1, j1, . . . , js) = 1]
∣∣∣≤ negl1(λ).

(C.9)

We prove Claim 6 by contradiction. Suppose for a PPT distinguisher DRev, there

exists a polynomial p(λ) such that,∣∣∣ Pr[DRev(C,v,G
′, I0, j1, . . . , js) = 1]− Pr[DRev(C,v,G

′, I1, j1, . . . , js) = 1]
∣∣∣≥ 1

p(λ)
.

(C.10)

SoDRev can distinguish between the two above scenarios with a non-negligible probability.

We will show how to construct a DDH adversary DDDH using DRev as a subroutine. A

DDH challenger C samples d $← {0, 1}, x, y, z $← Zn. C sets X = xG, Y = yG,Z = zdG,

where z0 = z, z1 = xy. C sends (X, Y, Z) to DDDH. DDDH outputs d′ as the estimate of d.

DDDH wins if d′ = d. We construct DDDH using a hybrid argument.

Consider a hybrid simulator S
(n)
hyb which is given (C,v,G′, I, Î, j1, . . . , js) as input

where n ∈ {0, 1, 2, . . . , s}. S(n)
hyb works as follows.

1. It produces a vector I(n) of same length of I and Î, i.e. N . It populates the j1th,

j2th, . . . , jnth elements of I(n) with the j1th, j2th, . . . , jnth elements of I.

154

2. It populates the other elements of I(n) with uniform elements from G.

3. It outputs (C,v,G′, I(n), j1, . . . , js).

Modeling H(·) a random oracle we have,

Pr[DRev((C,v,G
′, I0, j1, . . . , js) = 1] = Pr[DRev(S

(0)
hyb) = 1], (C.11)

Pr[DRev(C,v,G
′, I1, j1, . . . , js) = 1] = Pr[DRev(S

(s)
hyb) = 1], (C.12)

as I0 is Î and I1 is I.

The construction of DDDH having (X, Y, Z) as input is as follows.

1. It queries DRev and obtains N, s, where 2 ≤ N ≤ f(λ), 1 ≤ s ≤ N − 1.

2. It randomly chooses k∗ $← [s], j1, j2, . . . , js $← [N].

3. It defines the following vectors,

CDDH = (C1, C2, . . . , CN),

IDDH = (I1, I2, . . . , IN),

vDDH = (v1, v2, . . . , vN).

4. It populates the elements in vDDH by uniformly sampling the set of allowed mounts.

5. It chooses x1, x2, . . . , xk∗−1 $← Zn. It sets G′ = Y . For all l ∈ [k∗ − 1], it sets,

Cjl = xlG+ vjlH, Ijl = xlG
′ + vjlH.

It also sets,

Cjk∗ = X, Ijk∗ = Z.

6. It populates other elements of CDDH, IDDH with uniform elements from G.

7. It sends
(
CDDH,vDDH,G′, IDDH, j1, . . . , js

)
to DRev and receives b′ as output. It

sends b′ as its response to the challenger C.

155

Now we have,

Pr
[
DDDH(X, Y, Z) = 1

∣∣ d = 0
]

=
s∑

m=1

Pr[k∗ = m] Pr
[
DDDH(X, Y, Z) = 1

∣∣ d = 0 ∧ k∗ = m
]

=
s∑

m=1

Pr[k∗ = m] Pr
[
DRev

(
CDDH,vDDH,G′, IDDH, j1, . . . , js

)
= 1

∣∣ d = 0 ∧ k∗ = m
]
,

(1)
=

s∑
m=1

1

s
Pr
[
DRev(S

(m−1)
hyb) = 1

]
,

(2)
=

s−1∑
m=0

1

s
Pr
[
DRev(S

(m)
hyb) = 1

]
. (C.13)

Here equality (1) comes from the fact that when d = 0, (Cjm − vjmH,G
′, Ijm − vjmH)

is not a DDH triple. Equality (2) is obtained by simple changes in the indices of the

summation. Similarly we obtain the following equation,

Pr
[
DDDH(X, Y, Z) = 1

∣∣ d = 1
]

=
s∑

m=1

Pr[k∗ = m] Pr
[
DRev

(
CDDH,vDDH,G′, IDDH, j1, . . . , js

)
= 1

∣∣ d = 1 ∧ k∗ = m
]
,

(3)
=

s∑
m=1

1

s
Pr
[
DRev(S

(m)
hyb) = 1

]
. (C.14)

Here equality (3) comes from the fact that when d = 1, (Cjm − vjmH,G′, Ijm − vjmH) is

a DDH triple. Now we have∣∣∣ Pr [DDDH(X, Y, Z) = 1
∣∣ d = 0

]
− Pr

[
DDDH(X, Y, Z) = 1

∣∣ d = 1
] ∣∣∣

(4)
=
∣∣∣ 1
s

(
s−1∑
m=0

Pr
[
DRev(S

(m)
hyb) = 1

]
−

s∑
m=1

Pr
[
DRev(S

(m)
hyb) = 1

]) ∣∣∣,
(5)
=

1

s

∣∣∣ Pr [DRev(S
(0)
hyb) = 1

]
− Pr

[
DRev(S

(s)
hyb) = 1

] ∣∣∣,
(6)
=

1

s

∣∣∣ Pr[DRev(C,v,G
′, I0, j1, . . . , js) = 1]− Pr[DRev(C,v,G

′, I1, j1, . . . , js) = 1]
∣∣∣,

(7)

≥ 1

s
p(λ) = p1(λ) (say). (C.15)

Here the equality (4) comes from equations (C.13) and (C.14), the equality (5) comes from

cancellations, the equality (6) comes from equations (C.11) and (C.12), and the inequality

(7) comes from the assumption given in the inequality (C.10). However, the inequality

(C.15) is a contradiction under the DDH assumption. So the inequality (C.10) cannot be

true for any polynomial p(λ). Hence Claim 6 is proved.

156

Appendix D

Proofs and Signature Generation

Procedures in Chapter 5

D.1 Proof of Theorem 5.1

We need to prove that no PPT distinguisher DNum in the NumPriv experiment can distin-

guish between Num1 =
(
hji ,A

(i)
anon,P(i),Σ(i)

)f(λ)
i=1

and Num0 =
(
hji ,A

(i)
anon, P̂(i), Σ̂(i)

)f(λ)
i=1

with a probability non-negligibly better than 1
2
, i.e. inequality (5.20) holds for every PPT

distinguisher DNum.

The anonymity sets
{
A

(i)
anon

}f(λ)
i=1

are identical in Num0 and Num1. Also the elements

in (Σ(i))
f(λ)
i=1 in Num1 and (Σ̂(i))

f(λ)
i=1 in Num0 are identically distributed. Hence these

elements do not provide any advantage to DNum in predicting b. Also consider a Pedersen

commitment corresponding to an account not owned by the exchange. They are identically

distributed i.e. p̂i,k = h
qi,k
ji

in Num0 and pi,k = h
wi,k
ji

in Num1, where qi,k, wi,k $← Fp.

However, for an exchange-owned account the Pedersen commitments are,

pi,k = gvi,kh
ki,k
ji

in Num1 and,

ˆpi,k = h
qi,k
ji

in Num0.

As mentioned, in a particular anonymity set A
(i)
anon, all the exchange-owned accounts

should have distinct secret keys. However, a particular secret key kl can appear fl(λ) times

across f(λ) Nummatus proofs, where fl(λ) ∈ [f(λ)]. Suppose, Numact has N number of

such distinct keys k1, k2, . . . , kN used by the exchange across f(λ) proofs. Suppose for a

particular secret key kl, the set {pl,1, pl,2, . . . , pl,fl(λ)} ∈
(
P(i)

)f(λ)
i=1

is the set of all Pedersen

157

Table D.1: Various Quantities Used in the Proof of Theorem 5.1

Notation Meaning

pi,j ∈ P(i) Pedersen commitment in the jth account in the ith anonymity set.

pl,j ∈M(l) Pedersen commitment in the jth exchange-owned account in the set⋃f(λ)
i=1 P(i) where kl is used.

p̂i,j ∈ P(i) Simulated Pedersen commitment in the jth account in the ith anonymity set.

p̂l,j ∈M(l) Simulated Pedersen commitment in the jth exchange-owned account in the set⋃f(λ)
i=1 P̂(i) where kl is used in the original proof.

hji Base element used in the ith anonymity set.

hl,j Base element used for the Pedersen commitment pl,j.

fl(λ) The number of times the exchange uses the key kl in the f(λ) anonymity sets.

N The total number of distinct keys the exchange has used in the f(λ)

anonymity sets.

commitments where kl is used as a blinding factor. For each kl, l ∈ [N], we define the

following vectors.

M(l) = (hl,j, pl,j, vl,j)
fl(λ)
j=1 ,

M̂(l) = (hl,j, p̂l,j, vl,j)
fl(λ)
j=1 , (D.1)

where vl,j is the balance of the particular account where kl has been used in the jth

proof, hl,j is the corresponding base, and p̂l,j is the corresponding simulated Pedersen

commitment. Table D.1 lists the various quantities used so far.

Now we notice the following sequence in the vector M(l),

hl,1, hl,2, . . . , hl,fl(λ), pl,1g
−vl,1 , pl,2g

−vl,2 , . . . , pl,fl(λ)g
−vl,fl(λ)

= hl,1, hl,2, . . . , hl,fl(λ), h
kl
l,1, h

kl
l,2, . . . , h

kl
l,fl(λ)

.

In the vector M̂(l), the corresponding sequence will be,

hl,1, hl,2, . . . , hl,fl(λ), p̂l,1g
−vl,1 , p̂l,2g

−vl,2 , . . . , p̂l,fl(λ)g
−vl,fl(λ)

= hl,1, hl,2, . . . , hl,fl(λ), h
ql,1
l,1 g

−vl,1 , h
ql,2
l,2 g

−vl,2 , . . . , h
ql,fl(λ)

l,fl(λ)
g−vl,fl(λ) ,

= hl,1, hl,2, . . . , hl,fl(λ), ul,1, ul,2, . . . , ul,fl(λ),

158

where ul,k are uniform group elements for k ∈ [f(λ)].

Hence distinguishing between the vectors M(l) and M̂(l) is equivalent to solving the

generalized DDH problem [63] described below.

Suppose there is a generalized DDH challenger CGDDH and a PPT distinguisher

DGDDH. The challenger CGDDH calculates the following quantities.

g1, g2, . . . , gf ′(λ), u1, u2, . . . , uf ′(λ) $← G, d $← {0, 1}, k $← Fp.

If d = 0, CGDDH sets

a1 = g1, a2 = g2, . . . , af ′(λ) = gf ′(λ), b0,1 = u1, b0,2 = u2, . . . , b0,f ′(λ) = uf ′(λ).

If d = 1, CGDDH sets

a1 = g1, a2 = g2, . . . , af ′(λ) = gf ′(λ), b1,1 = gk1 , b1,2 = gk2 , . . . , b1,f ′(λ) = gkf ′(λ).

CGDDH sends (a1, a2, . . . , af ′(λ), bd,1, bd,2, . . . , bd,f ′(λ)) to DGDDH and DGDDH outputs a bit d̂.

DGDDH wins if d̂ = d.

We call the tuple sent by CGDDH when d = 1, a generalized DDH tuple. There are N

such tuples in (M(l))Nl=1. However, with an overwhelming probability there is no such tuple

in (M̂(l))Nl=1. A PPT distinguisher DNum who can successfully predict b in the NumPriv

experiment, must be able to distinguish between these two scenarios.

Now suppose in the NumPriv experiment, DNum is replaced by DNum which receives

Mb instead of Numb. Here M0 is (M̂(l))Nl=1 and M1 is (M(l))Nl=1. Notice that DNum has

the amounts of the accounts and the sets of all accounts where the same secret key has

been used as additional and relevant information compared to DNum when predicting the

value of b is of concern. The additional information ((Σ(i))
f(λ)
i=1 , accounts in the anonymity

sets, Pedersen commitments corresponding to cover accounts) that DNum has compared

to DNum does not help DNum in predicting the value of b as discussed above. Hence we

make the following claim.

Claim 7. For every PPT distinguisher DNum in the experiment NumPriv, there exist

another PPT distinguisher DNum such that the following inequality holds.∣∣∣ Pr[DNum(Numb) = b]− 1

2

∣∣∣≤∣∣∣ Pr[DNum(Mb) = b]− 1

2

∣∣∣ . (D.2)

159

The RHS of the inequality (D.2) can be alternatively represented as,∣∣∣ Pr[DNum(Mb) = b]− 1

2

∣∣∣
=
∣∣∣ Pr[b = 0]Pr[DNum(Mb) = b|b = 0] + Pr[b = 1]Pr[DNum(Mb) = b|b = 1]− 1

2

∣∣∣,
=
∣∣∣ 1
2
Pr[DNum(M0) = 0] +

1

2
Pr[DNum(M1) = 1]− 1

2

∣∣∣,
=
∣∣∣ 1
2
(1− Pr[DNum(M0) = 1]) +

1

2
Pr[DNum(M1) = 1]− 1

2

∣∣∣,
=

1

2

∣∣∣ Pr[DNum(M0) = 1]− Pr[DNum(M1) = 1]
∣∣∣,

(D.3)

From equation (D.3) and inequality (D.2), to prove Theorem 5.1, it is enough to prove

the following claim.

Claim 8. For every PPT DNum in the NumPriv experiment, there exists a negligible

function negl1(λ) of the security parameter λ such that,∣∣∣ Pr[DNum(M0) = 1]− Pr[DNum(M1) = 1]
∣∣∣≤ negl1(λ). (D.4)

We prove Claim 8 by contradiction. Suppose for a PPT distinguisher DNum, there

exists a polynomial p(λ) such that,∣∣∣ Pr[DNum(M0) = 1]− Pr[DNum(M1) = 1]
∣∣∣≥ 1

p(λ)
. (D.5)

Now we construct DGDDH using DNum as subroutine and a hybrid argument similar to

previous chapters.

Consider a hybrid simulator S
(n)
hyb which is given M0,M1, n ∈ {0, 1, 2, . . . , N} as

input. S(n)
hyb works as follows.

1. It produces a vector M(n) of same length of M0 and M1 i.e. N . It populates the

first n elements of M(n) with the first n elements of M1.

2. It populates the (n + 1)th element to the Nth element of M(n) with the (n + 1)th

element to the Nth element of M0.

3. It outputs M(n).

We have,

Pr[DNum((M0) = 1] = Pr[DNum(S
(0)
hyb) = 1], (D.6)

Pr[DNum(M1) = 1] = Pr[DNum(S
(N)
hyb) = 1]. (D.7)

160

The construction of DGDDH having (a1, a2, . . . , af ′(λ), bd,1, bd,2, . . . , bd,f ′(λ)) as input is

as follows.

1. It queries DNum and obtains N , where 2 ≤ N ≤ f(λ).

2. It randomly chooses s∗ $← [N], f1(λ), f2(λ), . . . , fs∗−1(λ), fs∗+1(λ), . . . , fN(λ) $← [f(λ)],

k1, k2, . . . , ks∗−1 $← Fp. Sets fs∗(λ) = f ′(λ).

3. For each i ∈ [N], it defines the vector,

M
(i)
GDDH = (h′i,j, p

′
i,j, v

′
i,j)

fi(λ)
j=1 .

4. It populates v′i,j by sampling uniformly the set of allowed amounts V , for all i ∈

[N], j ∈ [fi(λ)].

5. For i ∈ [1, 2, . . . , s∗ − 1], it populates the random oracle output h′i,j with uniform

elements from G. It also sets p′i,j = h′kii,jg
v′i,j for all j ∈ [f(λ)], i ∈ [1, 2, . . . , s∗ − 1].

6. For i = s∗, it sets random oracle output h′s∗,j = aj and p′s∗,j = bjg
v′
s∗,j for j ∈ [f ′(λ)].

7. For i = s∗ + 1 to N , it populates h′i,j, p′i,j by choosing uniform group elements for

all j ∈ [fi(λ)].

8. It sends
(
M

(i)
GDDH

)N
i=1

to DNum and receives b′ as output. It sends b′ as its response

to the challenger CGDDH.

Now we have,

Pr
[
DGDDH(a1, a2, . . . , af ′(λ), bd,1, bd,2, . . . , bd,f ′(λ)) = 1

∣∣ d = 0
]

=
N∑
m=1

Pr[s∗ = m] Pr
[
DGDDH(a1, a2, . . . , af ′(λ), bd,1, bd,2, . . . , bd,f ′(λ)) = 1

∣∣ d = 0 ∧ s∗ = m
]
,

=
N∑
m=1

Pr[s∗ = m] Pr
[
DNum

(
(M

(i)
GDDH)

N
i=1

)
= 1

∣∣ d = 0 ∧ s∗ = m
]
,

(1)
=

N∑
m=1

1

N
Pr
[
DNum(S

(m−1)
hyb) = 1

]
,

(2)
=

N−1∑
m=0

1

N
Pr
[
DNum(S

(m)
hyb) = 1

]
. (D.8)

161

Here equality (1) comes from the fact that when d = 0, M
(m)
GDDH does not contain any

generalized DDH tuple. Equality (2) is obtained by simple changes in the indices of the

summation. Similarly we obtain the following equation,

Pr
[
DGDDH(a1, a2, . . . , af ′(λ), bd,1, bd,2, . . . , bd,f ′(λ)) = 1

∣∣ d = 1
]

=
N∑
m=1

Pr[s∗ = m] Pr
[
DNum

(
(M

(i)
GDDH)

N
i=1

)
= 1

∣∣ d = 1 ∧ s∗ = m
]
,

(3)
=

N∑
m=1

1

N
Pr
[
DNum(S

(m)
hyb) = 1

]
. (D.9)

Here equality (3) comes from the fact that when d = 1, M
(m)
GDDH contains a generalized

DDH tuple. Now we have∣∣∣ Pr [DGDDH(a1, a2, . . . , af ′(λ), bd,1, bd,2, . . . , bd,f ′(λ)) = 1
∣∣ d = 0

]
−

Pr
[
DGDDH(a1, a2, . . . , af ′(λ), bd,1, bd,2, . . . , bd,f ′(λ)) = 1

∣∣ d = 1
] ∣∣∣

(4)
=
∣∣∣ 1

N

(
N−1∑
m=0

Pr
[
DNum(S

(m)
hyb) = 1

]
−

N∑
m=1

Pr
[
DNum(S

(m)
hyb) = 1

]) ∣∣∣,
(5)
=

1

N

∣∣∣ Pr [DNum(S
(0)
hyb) = 1

]
− Pr

[
DNum(S

(N)
hyb) = 1

] ∣∣∣,
(6)
=

1

N

∣∣∣ Pr[DNum((M0) = 1]− Pr[DNum((M1) = 1]
∣∣∣,

(7)

≥ 1

N
p(λ) = p1(λ) (say). (D.10)

Here the equality (4) comes from equations (D.8) and (D.9), the equality (5) comes from

cancellations, the equality (6) comes from equations (D.6) and (D.7), and the inequality

(7) comes from the assumption given in the inequality (D.5). However, the inequality

(D.10) is a contradiction under the generalized DDH assumption. So the inequality (D.5)

cannot be true for any polynomial p(λ). Hence Claim 8 is proved.

D.2 Nummatus NIZKPoK Generation and Verification

Algorithms

In this section, we describe the procedure for generating and verifying the NIZKPoK σi

that is used in Nummatus. In the notation proposed by Camenisch and Stadler [23], [24],

162

the NIZKPoK is of the form

PoK
{
(α, β)

∣∣∣ (bi = aαi ∧ pid
−1
i =

(
c−1i hj

)α) ∨ (pi = hβj

)}
.

The above proof is for a disjunction of two statements. We motivate the structure of σi

by first describing methods to prove these two statements individually. Then the method

first proposed by Cramer et al. [64] is used to generate a proof for the disjunction of the

two statements.

Let H : {0, 1}∗ 7→ Fp be a cryptographic hash function which is modeled as a random

oracle. Let ‖ denote the bitstring concatenation operator. For notational convenience,

we write H(x, y, z) to denote H(x‖y‖z) where x, y, z are group elements represented as

bitstrings.

Definition D.1. An ordered pair (e, s) ∈ F2
p is a NIZKPoK of the discrete logarithm of

a group element pi with respect to a base hj if

e = H(hj, pi, h
s
jp
e
i). (D.11)

The pair (e, s) is said to be of the form PoK{β | pi = hβj }.

The proof (e, s) is generated by first choosing a scalar r uniformly from Fp and

calculating e = H(hj, pi, h
r
j). The second element of the pair is calculated as s = r − eβ

where β is the discrete logarithm of pi with respect to hj, which is known to the prover.

It now follows that

e = H(hj, pi, h
r
j) = H(hj, pi, h

s+eβ
j) = H(hj, pi, h

s
jp
e
i). (D.12)

The verification of the proof (e, s) simply consists of checking the equality in equation

(D.11).

Definition D.2. An ordered pair (e, s) ∈ F2
p is a NIZKPoK of

1. the knowledge of the discrete logarithms of the group elements bi with respect to base

ai, and

2. the knowledge of discrete logarithms of the group element pid−1i with respect to base

c−1i hj, and

163

3. the equality of the discrete logarithm of bi with respect to ai and of pid−1i with respect

to c−1i hj,

if it satisfies

e = H
(
stmti, asi b

e
i ,
(
c−1i hj

)s (
pid
−1
i

)e)
. (D.13)

where stmti = (hj, ai, bi, ci, di, pi) is the tuple of group elements appearing in the statement

being proved. The ordered pair (e, s) is said to be of the form

PoK
{
α
∣∣∣ bi = aαi ∧ pid

−1
i =

(
c−1i hj

)α}
.

A prover who knows α can generate the proof (e, s) as follows:

• The prover chooses scalars r uniformly from Fp and calculates

e = H
(
stmti, ari ,

(
c−1i hj

)r)
. (D.14)

• The second scalar in the proof is calculated as

s = r − eα (D.15)

It follows that

e = H
(
stmti, ari ,

(
c−1i hj

)r)
= H

(
stmti, as+eαi ,

(
c−1i hj

)s+eα)
= H

(
stmti, asi b

e
i ,
(
c−1i hj

)s (
pid
−1
i

)e)
. (D.16)

The verification of the proof (e, s) simply consists of checking the equality in equation

(D.13).

The NIZKPoK σi in Nummatus is a proof of the disjunction of the two statements

proved above.

Definition D.3. The tuple σi = (e1, e2, s1, s2) ∈ F4
p is a NIZKPoK of the knowledge of

the discrete logarithm of a group element pi with respect to base hj or

• the knowledge of the discrete logarithm of the group element bi with respect to base ai,

and

• the knowledge of discrete logarithm of the group element pid−1i with respect to base c−1i hj,

and

164

• the equality of the discrete logarithm of bi with respect to ai and of pid−1i with respect to

c−1i hj,

if it satisfies

e1 + e2 = H
(
stmti, as1i b

e1
i ,
(
c−1i hj

)s1 (pid−1i)e1 , hs2j pe2i) . (D.17)

where stmti = (hj, ai, bi, ci, di, pi) is the tuple of group elements appearing in the statement

being proved. The tuple (e1, e2, s1, s2) is said to be of the form

PoK
{
(α, β)

∣∣∣ (bi = aαi ∧ pid
−1
i =

(
c−1i hj

)α) ∨ (pi = hβj

)}
.

Suppose the prover know the discrete logarithm β of pi with respect to base hj. Then

she can create the proof σi as follows:

1. She chooses scalars r2, e1, s1 uniformly and independently from Fp. She calculates

e2 as

e2 = H
(
stmti, as1i b

e1
i ,
(
c−1i hj

)s1 (pid−1i)e1 , hr2j)− e1. (D.18)

2. Using her knowledge of β, she calculates s2 as

s2 = r2 − e2β. (D.19)

It follows that

e1 + e2 = H
(
stmti, as1i b

e1
i ,
(
c−1i hj

)s1 (pid−1i)e1 , hs2+e2βj

)
= H

(
stmti, as1i b

e1
i ,
(
c−1i hj

)s1 (pid−1i)e1 , hs2j pe2i) . (D.20)

On the other hand, if the prover knows α such that bi = aαi , and pid
−1
i =

(
c−1i hj

)α,
then she can create the proof σi as follows:

1. She chooses scalars r1, e2, s2 uniformly and independently from Fp. She calculates

e1 as

e1 = H
(
stmti, ar1i ,

(
c−1i hj

)r1 , hs2j pe2i)− e2. (D.21)

2. Using her knowledge of α, she calculates s1 as

s1 = r1 − e1α. (D.22)

165

It follows that

e1 + e2 = H
(
stmti, ar1i ,

(
c−1i hj

)r1 , hs2j pe2i)
= H

(
stmti, as1+e1αi ,

(
c−1i hj

)s1+e1α, hs2j pe2i)
= H

(
stmti, as1i b

e1
i ,
(
c−1i hj

)s1 (pid−1i)e1 , hs2j pe2i) . (D.23)

In both cases, the verification of the proof (e1, e2, s1, s2) consists of checking the equality

in equation (D.17). In the proof of disjunction of statements, the prover has one degree

of freedom as only the sum e1 + e2 has to be equal to the hash function output (whose

argument contains the scalars). This freedom is exploited to choose which knowledge is

used to prove the disjunction.

D.3 Simplus NIZKPoK Generation and Verification Al-

gorithms

Compared to the NIZKPoK in the Nummatus protocol, the NIZKPoK ψi in the Simplus

protocol is simpler to compute.

Definition D.4. An ordered pair ψi = (e, s) ∈ F2
p is a NIZKPoK of

1. the knowledge of the discrete logarithm of the group element bi with respect to base

ai, and

2. the knowledge of discrete logarithm of the group element pid−1i with respect to base

c−1i h, and

3. the equality of the discrete logarithm of bi with respect to ai and of pid−1i with respect

to c−1i h,

if it satisfies

e = H
(
stmti, asi b

e
i ,
(
c−1i h

)s (
pid
−1
i

)e)
. (D.24)

where stmti = (h, ai, bi, ci, di, pi) is the tuple of group elements appearing in the statement

being proved. The ordered pair (e, s) is said to be of the form

PoK
{
α
∣∣∣ bi = aαi ∧ pid

−1
i =

(
c−1i h

)α}
.

166

A prover who knows α can generate the proof (e, s) as follows:

• The prover chooses scalars r uniformly from Fp and calculates

e = H
(
stmti, ari ,

(
c−1i h

)r)
. (D.25)

• The second scalar in the proof is calculated as

s = r − eα (D.26)

It follows that

e = H
(
stmti, ari ,

(
c−1i h

)r)
= H

(
stmti, as+eαi ,

(
c−1i h

)s+eα)
= H

(
stmti, asi b

e
i ,
(
c−1i h

)s (
pid
−1
i

)e)
. (D.27)

The verification of the proof (e, s) simply consists of checking the equality in equation

(D.24).

167

